CHAPTER 3

Age-Structured
Population
Growth




50 CHAPTER 3: AGE-STRUCTURED POPULATION GROWTH

Model Presentation and Predictions

EXPONENTIAL GROWTH WITH AGE STRUCTURE

In Chapter 1, we represented per capita birth and death rates as constants (b
and d), which allowed us to easily calculate » for a population with exponen-
tial growth. The resulting model was appropriate for “simple” organisms
such as single-celled bacteria or protozoa. But for most plants and animals,
birth and death rates depend on the age of an individual.

For example, a newborn elephant cannot reproduce immediately, but must
grow for a decade or more before it is reproductively mature. Death rates also
vary with age. Seeds, larvae, and hatchlings usually have higher mortality
rates than older age classes. Death rates also tend to be high for the very old-
est individuals in a population, which may be more vulnerable to predators,
parasites, and disease.

The age structure of a population has the potential to affect population
growth. For example, if a population consisted only of tadpoles, it would not
begin to grow until the tadpoles had metamorphosed into frogs and reached
sexual maturity. In contrast, if a population of monkeys consisted only of old,
postreproductive individuals, it would decline to extinction.

In this chapter, we will learn how to calculate 7 for a population in which
birth and death rates depend on the age of an organism. Next, we will illus-
trate the short-term changes in age structure of a population that occur before
it settles into a pattern of steady exponential growth. We will briefly consid-
er the problem of life history strategies—why natural selection tends to favor
certain birth and death schedules. Finally, we will develop a model of popu-
lation growth for organisms with complex life histories, such as corals and
perennial plants, that do not exhibit simple age structure.

Many students find the analysis of life tables to be one of the most confus-
ing topics in ecology. Admittedly, the calculations in this chapter are tedious;
we have to keep track of the birth rate, death rate, and number of individuals
in each age class of the population. Be careful with your subscripts, but try
not to get bogged down in notation. Keep in mind that we are still using a
simple model of exponential growth in an environment with unlimited
resources. In that sense, the concepts presented in this chapter are no different
than those in Chapter 1.

NOTATION FOR AGES AND AGE CLASSES

To begin our analysis, we need some notation to keep track of the different
ages and age classes in a population. Technically, we are modeling a popula-
tion with continuous births and deaths. However, because we are classifying
individuals into discrete age classes, our calculations will represent approxi-
. mations to continuous growth. There is more than one way to approximate
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Figure 3.1 The relationship between age (x) and age class (i) in population growth
models. (From Caswell 2001.)

these continuous functions, and the equations we use depend on the timing
of the population censuses and the seasonal pattern of births and deaths.

We use the variable x in parentheses to refer to the age of an individual.
For our discussion, the units of x will be years. However, any convenient time
interval can be used, and the choice will usually be based on the life span of
the organism and the type of census data that are available. By convention,
we classify a newborn as age 0 (nof age 1). An individual is age 0 at birth, age
0.5 at 6 months, and age 1 at its first birthday, which is the start of the second
year. We use the constant k to refer to the final age in the life table, that is the
age by which all individuals have died. Thus, x is a number whose value
ranges from 0 to k. The number of ages in the life table depends on the length
of the census interval and the life span of the organism.

Alternatively, we can designate the age of an individual by its age class.
An individual in age class i is between the ages of i — 1 and i (Figure 3.1). For
example, an individual in the third age class is between the ages of 2 and 3.
Similarly, a newborn is of age 0, but is in the first age class. If the ages in the
population range from 0 to k, the age classes range from 1 to k. To keep the
distinction clear, variables that indicate age will appear in parentheses,
whereas variables that indicate age class will be designated by a subscript.
For example, f(5) indicates individuals of age 5, whereas f5 indicates individ-
uals in the fifth age class (those between the ages of 4 and 5).*

There is a subtle distinction between ages and age classes. In a continu-
ously growing population, individuals of different ages have different birth
and death rates. However, when we classify individuals into discrete age
classes, we will usually be grouping individuals of slightly different ages. For
example, the first age class includes both newborns and individuals who are
about to celebrate their first birthday. For modeling purposes, we treat both
kinds of individuals as identical and assign a single value of survival proba-
bility (P;) and fecundity coefficient (F;) to all individuals of an age class.

We can analyze our demographic model using the notation of either ages or
age classes. We will follow the textbook tradition of using the age notation to
describe the life-table analysis. However, we will switch to the age class nota-
tion to describe population growth and the analysis of complex life cycles.

*Most ecology textbooks designate ages with subscripts, but I have followed the mathemati-
cians’ convention of using subscripts for age-class matrices (see Caswell 2001).
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THE FECUNDITY SCHEDULE [b(x)]

The fecundity schedule consists of the average number of female offspring
born per unit time to an individual female of a particular age. The fecundity
schedule is a column of values represented as b(x) or m(x), abbreviations for
birth or maternity. For example, if b(6) = 3, a female of age 6 will give birth
to an average of 3 female offspring. Thus, the b(x) schedule gives per capita
fecundity rates for females. Technically, we should be modeling the numbers
of both males and females, because the two sexes often have different mor-
tality schedules. However, we can reasonably model population growth by
counting only the females.

The entries in the fecundity schedule are non-negative real numbers. An
entry of zero in the fecundity schedule means that individuals of a particular
age do not reproduce. The fecundity schedule gives the average reproduction
for a female of a particular age, so these numbers do not have to be integers,
and may be less than 1.0 for ages with very little reproduction.

Table 3.1 gives a hypothetical life table for an organism that lives to the
end of its fourth year. The ages are 0 through 4, and the age classes are 1

Table 3.1 Standard life-table calculations.”
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through 4. We will use the data in Table 3.1 to illustrate all the calculations
necessary for a typical life-table analysis. If you look at the b(x) column, you
see that newborns do not reproduce. One-year-olds produce an average of 2
offspring, two-year-olds produce 3 offspring, and three-year-olds produce 1
offspring.

FECUNDITY SCHEDULES IN NATURE

In nature, what sorts of fecundity schedules do we find? Animal ecologists
distinguish between semelparous and iteroparous reproduction. Plant ecolo-
gists use the equivalent terms monocarpic and polycarpic. In semelparous
(monocarpic), or “big bang” reproduction, an organism reproduces only once
in its lifetime. Examples are oceanic salmon and many flowering desert
plants. The fecundity schedule for a semelparous organism would have
zeroes for all ages except for the single reproductive age. In iteroparous (poly-
carpic) reproduction, the individual reproduces repeatedly during its life-
time. Examples include long-lived organisms such as sea turtles and oak
trees. Fecundity schedules for iteroparous organisms have non-zero entries
for two or more ages.

Plant ecologists also use the terms annual and perennial to refer to, respec-
tively, plants that complete their life cycle in a single season, and those that
live for more than one season. Although there are many exceptions, most
annual species are semelparous, and most perennial species are iteroparous.
We will postpone our discussion of the evolutionary significance of these
reproductive strategies. For now, we will simply use the fixed fecundity
schedule for a population to help us calculate the intrinsic rate of increase.

THE SURVIVORSHIP SCHEDULE [/ (x)]

Fecundity is only half the story. The population growth rate depends equally
on the rates of mortality for different ages. Individuals of a particular age
might produce dozens of offspring, but if very few individuals survive to that
age, the effect on population growth rate will be minor.

How can we measure the survivorship schedule of a population? Imagine
that we have a cohort of individuals that were all born at the same time. We
follow this cohort from birth until all the individuals have died. We keep
track of the number of individuals that have survived to the start of each new
year. These data can be represented as a column of numbers, S(x), the cohort
survival. Table 3.1 gives some cohort data for our hypothetical life table. We
begin with a cohort of 500 individuals at birth, and by the beginning of the
fifth year, all of them have died.

The raw data in the S(x) column must now be converted to the survivor-
ship schedule, designated as I(x), where [ stands for life table. The quantity
I(x) is defined as the proportion of the original cohort that survives to age x.
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Equivalently, we can think of /(x) in terms of the survivorship of an individ-
ual. [(x) is the probability that an individual survives from birth to age x. To
calculate [(x), divide the number of survivors to age x [S(x)] by the size of the
original cohort [S(0)]:

Ix)= —g%%: . Equation3.1
The first entry in the /(x) column is [(0). It represents the survivorship of the
cohort to birth. By definition, all individuals in the cohort have “survived”
to the start, so the value of (0) is always 1.0 [[(0) = S(0)/S(0) = 1.0]. The last
entry in the I(x) column is I(k). It represents the age that none of the original
cohort reaches: I(k) always equals 0.0 [I(k) = 0.0/5(0) = 0.0]. Between these
endpoints, [(x) shrinks in size as individuals in the cohort age and die. Thus,
the [(x) column is a set of consecutively decreasing real numbers between 1.0
and 0.0.

For the data in Table 3.1, the original cohort was 500 individuals, so we
will divide each observation by this value to calculate /(x). Notice that 80% of
the original cohort survived to age 1 [/(1) = 0.80], but only 10% of the cohort
made it to age 3 [/(3) = 0.10]. This remaining 10% died between age 3 and age
4, so l(4) = 0.0; none of the original cohort is left.

When you calculate I(x) from a survivorship schedule, take care to divide
all the entries by the original cohort size [S(0)]. Do not make the common
mistake of dividing S(x) by other values in the life table. In the next section,
we will calculate age-specific survival probabilities, which do use consecu-
tive values of S(x). But for the calculation of I(x), always divide the observed
values by 5(0).

SURVIVAL PROBABILITY [g(x)]

The survivorship schedule I(x) gives the probability of survival from birth to
age x. To compare the survival of different ages directly, we must determine
the probability of survival from age x to age x + 1, given that an individual
has already survived to age x. The survival probability ¢(x) is the probability
that an individual of age x survives to age x + 1:

x+1) “

8= e .

 Equation3.2

From Table 3.1, for example, the probability that a newborn survives its first
year and reaches age 1 is g(0) = 0.8/1.0 = 0.8. Thus, there is an 80% chance
that a newborn will still be alive at age 1. If we are thinking in terms of a
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cohort analysis, 80% of all newborns will be alive at age 1. In contrast, the
probability of survival between ages 1 and 2 [¢g(1)] is (0.4/0.8) = 0.5. Although
the I(x) schedule never increases with age, the g(x) schedule may either
increase or decrease. The way in which survival probabilities change with
age is an important component of the life history of an organism, as described
in the next section.

SURVIVORSHIP SCHEDULES IN NATURE

What are the different types of survivorship curves observed in nature? There
are three basic patterns. These can be seen by plotting the logarithm of I(x)
on the y axis and age (x) on the x axis. The points on this graph are connected
to form a survivorship curve. The slope of this curve at any point is In[g(x)].
Therefore, if the survivorship curve forms a straight line, the probability of
survival is constant over those ages.

Figure 3.2 illustrates the three types of curves. A Type | survivorship curve
has high survivorship during young and intermediate ages, then a steep
drop-off in survivorship as individuals approach the maximum life span.
Examples include humans and other mammals that invest a good deal of

In [[(0)]

oI

Age (x)

Figure 3.2 Type I, I, and III survivorship curves. Note the logarithmic transforma-
tion of the y axis.
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parental care in their offspring, ensuring high survivorship of young age
classes.

The opposite, and more common, pattern is a Type Il survivorship curve.
In this case, survivorship is very poor for the young age classes, but much
higher for older individuals. Examples include many insects, marine inver-
tebrates, and flowering plants. These organisms may produce hundreds or
thousands of eggs, larvae, or seeds, most of which die. However, the handful
of individuals that do pass through this vulnerable stage have relatively high
survivorship in later years.

Finally, the Type Il survivorship curve is intermediate between these two.
Because it is a straight line on a logarithmic graph, the Type II survivorship
schedule is one in which the mortality rate is constant throughout life. Few
organisms have a true Type Il survivorship curve, because it is unusual for
the probability of death to remain constant as an organism ages. Some birds
have a Type II curve for much of their lives, but often with a steeper mortal-
ity curve during the more vulnerable egg and chick stages.

The I(x) and b(x) schedules are the basis for all our life-table calculations.
Keep in mind that these schedules are independent pieces of data about
death and birth. The I(x) schedule is calculated by following the survivorship
of a cohort of organisms. It tells us only the chances of individuals surviving
to a particular age, and contains no information about their reproduction. In
contrast, the b(x) schedule reveals only the per capita birth rates of females
of different ages, and does not say anything about how many females actu-
ally survive to those ages. If we know the I(x) and b(x) schedules, we can cal-
culate the intrinsic rate of increase, as illustrated in the next section. When
you work with the [(x) and b(x) schedules, be careful with your notation.
Remember that the I(x) column gives the survivorship up to the start of age x,
whereas the b(x) schedule gives the per capita birth rates of females of age x.

CALCULATING NET REPRODUCTIVE RATE (Rp)

To estimate r from the I(x) and b(x) schedules, we first have to compute two
other numbers, the net reproductive rate (Rp) and the generation time (G).
These numbers are part of the recipe for estimating 7, but they tell us impor-
tant things about an age-structured population in their own right. The net
reproductive rate, R, is defined as the mean number of female offspring pro-
duced per female over her lifetime. To compute Ry, multiply each value of
I(x) by the corresponding value of b(x) and sum these products across all ages:

=0
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The units of Ry are numbers of offspring. The net reproductive rate represents
the reproductive potential of a female during her entire lifetime, adjusted for
the mortality schedule. Suppose that there was no mortality in the popula-
tion until females reached their maximum age. This would mean that I(x) =
1.0 for all ages except the last. In this case, Equation 3.3 would simply add
up the lifetime production of offspring—the gross reproductive rate. But in
most populations, mortality in each age class reduces the potential contribu-
tion of offspring to the next generation. Thus, the net reproductive rate is the
offspring production discounted by mortality. For the fecundity and sur-
vivorship schedules in Table 3.1, Ro = 2.9 offspring.

If Ry is greater than 1.0, there is a net surplus of offspring produced each
generation, and the population increases exponentially. If Rg is less than 1.0,
the mortality is so great that the population cannot replace itself, and it
declines to extinction. Finally, if Ry = 1.0, the offspring production exactly bal-
ances the mortality each generation, and the population size does not change.

This description of Ry is very similar to the description of 2, the finite rate
of increase in the exponential growth model (see Chapter 1). In fact, you
might be tempted to conclude that r = In(Ry), because r = In(A) for popula-
tions with no age structure (Equation 1.5). However, A measures the rate of
increase as a function of absolute time, whereas Ry measures increase as a func-
tion of generation time. Therefore, if we want to calculate r, we must scale Rg to
account for generation time.

CALCULATING GENERATION TIME (G)

Generation time is a somewhat elusive concept for populations with contin-
uous growth. Imagine that we followed a cohort from birth and kept track of
all the offspring it produced. One definition of the generation time is the
average age of the parents of all the offspring produced by a single cohort
(Caughley 1977). This is calculated as:

El(x)b(x)x ’ -
G~—~9——————— ; Equation 3.4
21(x)b(x) .

=0

The units of I(x) and b(x) cancel in the numerator and denominator, leaving us
with an answer in units of time (x). Unless newborns have high fecundity
(b(0)>>0), the numerator will always be larger than the denominator in
Equation 3.4. Consequently, the generation time will usually be greater than
1.0 for populations with age structure. For the data in Table 3.1, G = 1.483 years.
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CALCULATING INTRINSIC RATE OF INCREASE (1)

We can use the equation for exponential growth to solve for r in terms of R
and G (Mertz 1970). Imagine a population is growing exponentially for a
time Gt

rG
Ne = Noe Expression 3.1

Dividing both sides by Ny gives:

Ny =e Expression 3.2

The ratio on the left side of the expression is an approximation to the net
reproductive rate, Ry:

Ry=e™® Expression 3.3
Taking the natural logarithm of both sides gives:

In(Ry) =G Expression 3.4

Rearranging Expression 3.4 gives us an approximation for r:

v z;_____.ln(RO) Equation 3.5
G - -

Thus, the rate of population increase is slower for organisms with long gen-
eration times. Continuing with the data in Table 3.1, the estimate of r is 0.718
individuals/(individual « year).

Equation 3.5 is only an approximation, although it is usually within 10% of
the true value (Stearns 1992). To obtain an exact solution for r, you must solve
the following equation:

=

‘e—f’fl(x‘)b(x) _: ‘1 - : quuaﬁon 36
Equation 3.6 is adapted from the Euler equation (pronounced “oiler”), named
after the Swiss mathematician Leonhard Euler (1707-1783), who developed it
in his analyses of human demography. Later in this chapter, we will illustrate
the derivation of the Euler equation. For now, we will simply use Equation
3.6 as a formula for determining the precise value of r.

Because we know the I(x) and b(x) schedules, the only unknown quantity in
Equation 3.6 is . Unfortunately, there is no way to solve this equation except
by plugging in different values of r and adjusting your estimate upwards or
downwards. A good starting place is the estimate of r from Equation 3.5. For
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the data in Table 3.1, substituting = 0.718 into Equation 3.6 gives a sum of
1.077, whereas the correct value of  will generate a sum of exactly 1.0. This
calculation indicates that our original estimate of r was too small. Because we
are summing with the negative exponent of r, a larger value of r will gener-
ate a smaller sum. If we experiment with different values, we find that an 7 of
0.776 is a close solution to the Euler equation.

DESCRIBING POPULATION AGE STRUCTURE

Once we have calculated r from the fecundity and survivorship schedules,
we can forecast the total population size by using any of the equations for
exponential growth from Chapter 1. But we are also interested in knowing
the number of individuals in each age class of the population. This means we
will shift our notation from ages to age classes.

We will use n;{t) to indicate the number of individuals at time f in age class
i. For example, if n11(3) = 50, there are 50 individuals in the first age class at
the third time step. Because there are k age classes in the population, the age
structure at time ¢ consists of a vector of abundances. We indicate this vector
with a boldfaced, lowercase n:

ny(t)

1y (t)

n(t)= Expression 3.5

()

For example, the vector for the population in Table 3.1 after five years might
be:

600

270

"= 100

50

Expression 3.6

Thus, there are 600 individuals in the first age class, but only 50 individuals in
the terminal age class (age class 4). Using information in the mortality and
fertility schedules, we can predict how the age structure of a population
changes from one time period [n(#)] to the next [n(t + 1)].

Describing the population in terms of its age structure requires us to shift
from using ages to using age classes. First, we need to obtain survival proba-
bilities P; for each age class. These probabilities represent the chance that an
individual in age class i survives to age class i + 1. Next, we need to calculate
fertilities F; for each age class. These fertilities represent the average number
of offspring produced by an individual in age class 7. Clearly, the survivor-
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ship probabilities and fertilities for individuals of different age classes are
related to the I(x) and b(x) schedules for individuals of different ages.

However, the conversion of these values is tricky; it depends on the timing
of births and deaths within an age class, and the timing of the population
census (Caswell 1989). In this primer, we will assume a simple birth-pulse
model, in which individuals give birth to all their offspring on the day they
enter a new age class. We will further assume a postbreeding census, in which
individuals are counted each year just after they breed.

These assumptions make the calculation of P; and F; relatively simple. A
birth-flow model, in which individuals reproduce continuously in an age
class, would require more complex calculations. Keep in mind that the esti-
mates of population growth will depend on how the age-class model is set
up. The estimates of population growth also may not match the exact calcu-
lations from the Euler equation. Once we have the survival probabilities and
fertility values for each age class, we will use them to calculate the changes in
population structure with time.

CALCULATING SURVIVAL PROBABILITIES FOR AGE CLASSES (P;)

For the birth-pulse model with a postbreeding census, the probability that an
individual in age class i survives to age class i + 1 is:

? o

i;: i %1)‘ ’ ~ Equation 3.7

This equation is similar to the calculation of the age-specific survival proba-
bility ¢(x) (Equation 3.2), although note the shift in notation as we go to a
model of age classes. With Equation 3.7, it is easy to calculate the change in
the number of individuals in a particular age class from one time period to
the next:

- m(t+1)=Bm() ~ Equation3.8
Equation 3.8 says that the number of individuals in a particular age class next
time step [n;,1(t + 1)] is the number of individuals currently in the previous
age class [n;(£)] multiplied by the survival probability for that age class (P;).
So, the survival probability controls the rate at which individuals “graduate”
to each successive age class.

CALCULATING FERTILITIES FOR AGE CLASSES (F;)

Equation 3.8 works for all age classes except the first. The number of individ-
uals in the first age class depends on the reproduction of all the age classes.
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We define the fertility of age class i as:
E=b) . - Equation 3.9

Equation 3.9 says that the fertility of a particular age class is the number of
offspring produced per female, discounted by the survival probability for
that age class. The discount is necessary because the parents must survive
through the age class in order to reproduce and have their offspring counted.

Once F; is known for each age class, we multiply these fertilities by the
number of individuals in each age class. This product is then summed over
all age classes to calculate the number of new offspring;

 mltl =‘Zﬁﬁi(f) - FEauatien3.10
Having derived fertility and survivorship coefficients for each age class from
the I(x) and b(x) schedules, we can now calculate the number of individuals in

each age class for a single time step. For a population with four age classes,
we would have:

my(t+1) = Fng (8) + Fynp (1) + Fana (f) + Fyny (£)
1y (t+1) =Py (f)
n(t+1) = Pony(£)
1y (t+1) = Pyna(t)

Expression 3.7

In the next section we will express these changes in matrix form.

THE LESLIE MATRIX

We can represent the growth of an age-structured population in matrix form.
The Leslie matrix, named after the population biologist Patrick H. Leslie,
describes the changes in population size due to mortality and reproduction
(Leslie 1945). If there are k age classes, the Leslie matrix is a k x k square
matrix. It always has the following form:

E K B K
PO 0 O )
= Expression 3.8
0 B 0 O
0 0 B 0

Each column of the Leslie matrix is the age class at time t and each row is the
age class at time ¢ + 1. Each entry in the matrix represents a transition, or
change in the number of individuals from one age class to another. In the
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Leslie matrix, the fertilities are always in the first row; they represent contri-
butions to newborns from reproduction of each age class. The survival proba-
bilities are always in the subdiagonal. They represent transitions from one age
class to the next. All other entries in the Leslie matrix are 0 because no other
transitions are possible. Individuals cannot remain in the same age class from
one year to the next, so the diagonals must equal zero. Similarly, individuals
cannot skip or repeat age classes, so other entries in the matrix are zero.

The reason for using the matrix format is that we can now describe popu-
lation growth as a simple matrix multiplication:

n(t+l)-Anll  Haushensnl

In other words, the population vector in the next time step [n(t + 1)] equals
the Leslie matrix (A) multiplied by the current population vector [n(#)]. The
rules of matrix algebra are used to calculate the changes in abundance in each
age class, and these are equivalent to the calculations in Expression 3.7. If you
have had matrix algebra, A is the dominant eigenvalue of the Leslie matrix.
Now that we have converted our age-based life-table data to an age-class
Leslie matrix, we are ready to see how age structure changes during popula-
tion growth.

Table 3.2 Calculation of age-specific survival probabilities and fertilities for the
Leslie matrix. Data from Table 3.1. Notice that the first row of the table is blank for
P;and F;, because we begin counting age classes at 1, not 0.

o f i . 10 i ;2)/','('_1) Fi=

- b
. i .

L e s s
-
- ..
i 4 b B 0 0

The resulting Leslie matrix is:

16 15 025 0
08 0 0 0
“lo 05 0 o0
0

0 0 025
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STABLE AND STATIONARY AGE DISTRIBUTIONS

Table 3.2 converts the life-table data of Table 3.1 to a Leslie matrix. We use
this Leslie matrix to compare the growth of two hypothetical populations.
One population has 50 individuals in each age class, and the second popula-
tion has 200 newborns, but no other age classes present. Figure 3.3 shows the

(a) 100,000¢
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100 ¢

’11(t)
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(b) 100,000

i
W o
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100

n{f)

10k
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Figure 3.3 Stable age distributions, showing the effects of initial age structure on
population growth. Each line represents a different age class, growing according to
the birth and death schedules of Table 3.1. In (a), the initial age distribution was 200
newborns. In (b), the initial age distribution was 50 individuals in each age class.
After some initial fluctuations, both populations settle into identical stable age dis-
tributions. On the logarithmic scale, the straight line for each age class indicates
exponential increase.
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number of individuals in each age class as a function of time. You can see that
the graphs for the two populations initially appear quite different from one
another as the relative numbers in the different age classes change in the early
phases of population growth. In particular, you can see that the population
with 200 newborns is dominated by this single age class, which passes as a
cohort through the older age classes. However, after about 6 time steps, both
populations have converged on the same age structure—they both have the
same relative numbers in each age, with newborns being most common, and
the oldest individuals being most rare. These relative proportions are main-
tained as the numbers in all ages increase exponentially.

These graphs illustrate an important property of age-structured populations.
For most life tables, if a population is growing with constant birth and death
rates, it will quickly converge on a stable age distribution, regardless of its initial
age structure. In the stable age distribution, the relative numbers of individuals
in each age class remain constant. Remember that the absolute numbers will
increase exponentially, as evidenced by the linear population growth curves
on the logarithmic scale of Figure 3.3. A special kind of stable age distribution is
the stationary age distribution. In a stationary age distribution, r = 0, so both
the relative and the absolute numbers in each age class remain constant.

What are the relative proportions in the different ages once the stable age
distribution has been achieved? The proportion of the population represent-
ed by each age is just the number in that age divided by the total population
size. This ratio is (Mertz 1970):

Once 7 has been calculated from the I(x) and b(x) schedules, Equation 3.12 can
be used to determine the stable age distribution. The calculations are illus-
trated in Table 3.3. In a stable age distribution, newborns are the most com-
mon age, and the oldest age is least common. In most cases, the larger 7 is,
the greater the proportion of the total population represented by newborns
and young individuals. For the matrix algebra solution, the stable age distri-
bution is the right-hand eigenvector of the Leslie matrix.

The Leslie matrix calculations of population growth can also be used as an
independent check on the calculation of 7. Table 3.4 illustrates some of the
raw data of age structure and population size from Figure 3.3a. For any two
consecutive time steps in the model, the ratio of the current population size to
the previous population size is a measure of A, the finite rate of increase. The
final column of Table 3.4 gives the natural logarithm of this ratio, which is 7.
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Table 3.3 Calculation of stable age and reproductive value distributions.”

. disf:fibutionf . . Rep roductivevaiued m ribqt;on
e | eviw | evlby) | Ze by

b
o

1om 1o oo ¢ 10w

0368 6| 0736 | 1000
| 0085 =
| o010 .

2 These calculations use 7 = 0.776, from the solution to the Euler equation in Table 3.1.

By 6 or 7 time steps in the model, the stable age distribution has been
achieved, and the estimate of  is 0.776, which matches the calculation from
the Euler equation in Table 3.1.

Table 3.4 Estimating 7 from the Leslie matrix calculations.”

The data are from different time steps in Figure 3.3a. Fractions for the age-class values have
been rounded to the nearest whole number.
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Model Assumptions

In spite of the lengthy calculations, the model presented here shares the basic
assumptions of the simple exponential growth model we derived in Chapter
1. In other words, we assume a closed population, no genetic structure, and
no time lags. In the simple exponential model, we assumed that b and d were
constant—they did not vary with time or with population density. In the age-
structured model, we assume that the I(x) and the b(x) schedules are constant.
As before, if each age class has a constant birth and death rate no matter how
large the population, resources must be unlimited.

Incidentally, if we use the value of r from the Euler equation to forecast
population growth, we must further assume that the population has achieved
a stable age distribution. One final point is that we have described the I(x)
schedule from a cohort analysis, in which the fate of a cohort is followed
through time. This horizontal, or cohort life table is the simplest method of
obtaining the I(x) schedule, but it assumes that death rates are constant dur-
ing the time the cohort is followed. A more reliable method is to measure
short-term death rates directly for each age class. Finally, it is possible to take
a cross-section of the population at one time and estimate death rates from
the relative sizes of consecutive age classes. This vertical, or static life table
is much less reliable and assumes the population has reached a stationary age
distribution. However, birth and death rates can be very difficult to measure
in the field, and we often have to rely on a number of methods to piece
together the data needed for a life-table analysis.

Model Variations

DERIVATION OF THE EULER EQUATION

The Euler equation forms the basis for age-structured demography, so it is
important to understand how this equation is derived. The key to the Euler
equation is recognizing the relationship between the number of births now
and the number of births at some point in the past (Roughgarden 1979). The
number of births in the population now, B(t), is simply the sum of the number
of births from parents of all different ages:
k
B(t)= Z (births from parents of age x)  Expression 3.9
x=0

If we allow the age intervals to become infinitely small, we can express this as
an integral equation:

k
B(t) = -[0 (births from parents of age x)dx Expression 3.10

The number of births from parents of age x is the product of the number of
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individuals born at time ¢ — x, their offspring production [b(x)], and their
probability of surviving to age x [I(x)]:

BO)=[[BE-0)I0bx)d  Expression3.11

Remember that the number of births comes from a population that is increas-
ing exponentially. Using C as an arbitrary starting population size and
assuming a stable age distribution, we have:

B(t)=Ce" Expression 3.12
Substituting this back into Expression 3.12 yields:

k
Ce" = [ Ce"t(x)b(x)dx Expression 3.13
0 p

Finally, if we divide both sides of Expression 3.13 by Ce™, we have the Euler
equation:

REPRODUCTIVE VALUE

Using the Euler equation, we can calculate another useful statistic from the life
table—the reproductive value of each age (Fisher 1930). The reproductive value is
the relative number of offspring that remain to be born to individuals of a given
age. You might think that a newborn individual would have the highest repro-
ductive value because it has not yet produced any offspring. However, its repro-
ductive value is discounted by the fact that it might not achieve its maximum
potential lifespan and produce all of its potential offspring. Let v(x) equal the
reproductive value for an individual of age x. We can define reproductive value
as the following ratio in a stable age distribution (Wilson and Bossert 1971):

number of offspring produced

by individuals of age x or older Expression 3.14

v(x) = number of individuals of age x

We can use the Euler equation to quantify the terms in the numerator and the
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denominator. For the numerator, we add the terms in the Euler equation from

the current age forward:
k

Offspring production = 'f@”ry I(y)b(y)dy Expression 3.15
X

For the denominator, the number of individuals in age x is the number born
at time x in the past, multiplied by the probability of surviving to age x. Thus:

Number in age x = 7% I(x) Expression 3.16

Substituting Expressions 3.15 and 3.16 into 3.14 gives:
k

[ 1y
v(x)=t— Expression 3.17
e ™I(x)

Rearranging the right-hand side yields a formula for reproductive value:

- :-1%5 j gf?yz(y)b(y)dy ~ Fquation3is

The discrete-time version of Equation 3.15 allows us to use the I(x) and b(x)
schedules to calculate the reproductive value for individuals of age x:

. 9y =f§>—*2e=—wl(y)b(y)tf ~ Equation3.16

y=x+1 '

For the matrix algebra solution, the left-hand eigenvector of the Leslie matrix
is the vector of reproductive values. From Equation 3.15, the reproductive
value of newborns always equals 1.0 (v(0) = 1.0). Thus, reproductive value is
measured relative to that of the first age. For example, if v(3) = 2.0, an indi-
vidual of age 3 will produce roughly twice as many offspring during the
remainder of its lifetime as will a newborn. Reproductive value reflects the
survivorship of an individual to its current age, its survivorship and repro-
duction in future ages, and the magnitude of . Reproductive value usually
peaks at or near the age of first reproduction, then drops off rapidly with
later ages. For the data in Table 3.1, reproductive value is maximal for indi-
viduals of age 0 (Table 3.3).

*Be careful with the notation in this formula. In particular, notice that the summation subscript
{y = x + 1) is increased by one. Thus, using the data from the sixth and eighth columns of Table
3.3, v(1) = (2.716)(0.264) = 0.717. Equation 3.16 generates reproductive values that are consis-
tent with the matrix algebra solutions, but the formula is restricted to birth-pulse populations
with'a post-breeding census. See Goodman (1982) and Caswell (2001) for more details.
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Reproductive value tells us which ages in the population are most “valu-
able” for future population growth. In Chapter 2, we noted that maximum
yield for a harvested population occurred when the population was harvested
to maximize population growth rate. For the simple logistic model, the best
strategy turned out to be maintaining the population at K/2. For an age-struc-
tured population, maximizing population growth rate would mean harvesting
individuals with relatively low reproductive value—usually newborns and
very old individuals, depending on the age structure of the population.

Reproductive value is also relevant to problems of population manage-
ment and conservation biology. If we are going to transplant captive-bred
individuals to a new population in order to increase the population growth
rate, we should wait until those individuals reach the age with the highest
reproductive value. Finally, natural selection will operate most heavily on
ages with high reproductive value. For example, an allele that expresses dele-
terious effects in reproductive age classes will be eliminated by selection
much more quickly than an allele that expresses the effects in older age class-
es, with lower reproductive value. Senescence may represent the accumula-
tion of deleterious effects in old individuals. Selection pressure is weaker on
older individuals (Rose 1984), in part because of their lower reproductive
value (Fisher 1930).

LIFE HISTORY STRATEGIES

Life-table data are essential for ecological predictions of population growth
rates and age structure. From an evolutionary perspective, we can ask why
we see certain life history patterns. In other words, why has natural selection
favored certain [(x) and b(x) schedules? Selection will favor any life history
schedule that maximizes an individual’s contribution of offspring to the next
generation. Thus, the “perfect” life history schedule would be one with max-
imum survivorship and maximum fertility in all age classes!

However, two forces prevent the evolution of this optimal life history.
First, we expect a number of tradeoffs to occur among life history traits.
Organisms that invest heavily in reproduction have less energy to devote
towards growth, maintenance, and resource acquisition. This may lead to
tradeoffs between reproduction and survivorship. An organism may produce
many small offspring that survive poorly or a few large offspring that sur-
vive well. Hence, there may be tradeoffs between offspring number and off-
spring survivorship.

Life history strategies will also be shaped by constraints—physiological or
evolutionary limitations that prevent the evolution of certain life history traits.
For example, organisms with large body size must take longer to grow and
reach maturity, so the age at first reproduction may be constrained by body
size. If an organism bears live offspring, body size will also constrain theTtins
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ber of offspring produced. The life history traits of an organism may reflect a
long evolutionary heritage, and may not represent the best “solution” to the
problem of maximizing fitness in the organism’s current environment.

One popular body of theory envisions that relative population density
serves as an important selective force on life history traits (MacArthur and
Wilson 1967; Pianka 1970). The theory of r—K selection takes its name from
the two constants of the logistic growth equation. Imagine a population that
is maintained at low population density, so that resources for growth are not
limited. Under these circumstances, the best reproductive strategy is simply
to maximize offspring production. So, the traits expected under r-selection
are early, semelparous reproduction, large », many offspring with poor sur-
vivorship, a Type [l survivorship curve, and small adult body size.

By contrast, in K-selection, an organism is growing in an environment that
is chronically crowded. An r-strategy will not work in this case because the
offspring will face limited resources and be relatively poor competitors.
Instead, the best strategy is one that leads to fewer, high-quality offspring that
are superior competitors. With resource limitation, K-selection should favor
late, iteroparous reproduction, small 7, few offspring with good survivorship,
a Type I survivorship curve, and large adult body size. Classic examples of
species thought to have evolved under the different regimes include mosqui-
toes and weeds (r-selected), and humans and whales (K-selected).

In spite of its popularity in textbooks, the theory of r- and K-selection is beset
by a number of problems. One fundamental problem is that the “predictions”
of r-K selection theory were never derived from a population model with age
structure. Another difficulty is that population density is not the only force dri-
ving the evolution of life history traits. For example, the theory predicts that
iteroparity evolves when organisms face resource competition and must devote
more of their energy to growth and maintenance than to reproduction. But
iteroparity could also evolve as a “bet-hedging” strategy if the survival of off-
spring is uncertain from one time period to the next (Murphy 1968). It may be
advantageous to spread reproduction over many time periods if there is a risk
of losing all your offspring if they are born at the wrong time.

Moreover, not all organisms have life history traits that neatly fit the pre-
dictions of the model. For example, many forest trees are long-lived and
iteroparous (K-selection), but they have a Type III survivorship curve (r-selec-
tion). Finally, the r—K selection theory has not been confirmed experimental-
ly. Laboratory populations of fruit flies (Taylor and Condra 1980) and proto-
zoa (Luckinbill 1979) did not always evolve r-selected traits when they were
maintained in uncrowded conditions or K-selected traits when they were
maintained in crowded conditions. Although the original theory of »—K selec-
tion has been discarded, it is nevertheless true that the ecological conditions
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an organism experiences—including its population density—can be impor-
tant forces of natural selection that shape life histories.

For example, mortality from predators can lead to major changes in birth
and death schedules (Gadgil and Bossert 1970; Roff 1992). If predators spe-
cialize on adult size classes, natural selection will favor individuals that
mature early and reproduce at small body sizes. These predictions have been
confirmed for freshwater tropical guppies: life histories differ among popu-
lations of the same species, depending on whether or not predators are pre-
sent (Reznick et al. 1996). Moreover, field studies demonstrate that life histo-
ry traits can evolve very rapidly in response to the presence of predators
(Reznick et al. 1997). Other studies have shown that body size—and hence
some life history traits—can also evolve in response to the presence of com-
peting species (Schluter 1994). In Chapters 5 and 6, we will develop ecologi-
cal models for understanding the effects of predators and competitors on
population dynamics. But it is important to emphasize that these interactions
have consequences for the evolution of life histories as well.

STAGE- AND SIZE-STRUCTURED POPULATION GROWTH

An implicit assumption in our development of the life table model is that the
age of an organism is the “correct” variable to use in defining the life history.
But for many life histories, age is not the critical variable. For example, many
insects pass through egg, larval, pupal, and adult stages. Survival may be
influenced more by an insect’s stage than its age. That is, survival of a beetle
may not depend on whether the beetle is three or six months old, but on
whether it is in the larval or adult stage. Of course, age and stage are not
independent of one another, because an organism’s life history stage will
depend, in part, on how old it is. But the transitions between stages are often
flexible and depend on biotic factors, such as food supply and population
density, and abiotic factors, such as temperature and photoperiod.

Even for organisms that do not have distinct life history stages, survival and
reproduction may depend more on the size or an organism than on its age.
Many organisms have indeterminate growth—a small fish may be either a fast-
growing juvenile or a stunted adult. If the risk of mortality is from predation by
other fishes, only the individual’s size, rather than its age, may be relevant.
Finally, “modular” organisms such as plants and corals may be organized as
colonies or semi-independent units (plant shoots) that are capable of repro-
duction. In these cases, the life history may be extremely complex, as coral
colonies can fragment or fuse, and plants can reproduce through vegetative
propagation. In all these examples, the age of the organism is less important
than its size or stage in determining its survivorship and reproduction.
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Fortunately, the Leslie matrix can be modified to account for these kinds of
life histories (Lefkovitch 1965). The key change is that the entries in the pop-
ulation matrix no longer represent the age of an organism, but rather its stage
(or size). We still incorporate a time step that represents the transition from
one stage to the next. For example, here is a transition matrix for a simplified
insect life cycle with three stages—egg, larva, and adult:

egg larva adult

egg | O 0 Fe

larva | Py Py 0 Expression 3.18

adult | 0 P, B,

Remember that each column represents the stage at time ¢ and each row rep-
resents the stage at time ¢ + 1. The entries in the first row represent fertilities.
The entries in the other rows represent transition probabilities between
stages. In contrast to the Leslie matrix, we now have positive entries on the
diagonal. This means that larvae and adults can stay in a particular stage at a
given time, whereas eggs will either die or advance to the larval stage. Only
the adult can reproduce, so there is a single fertility entry (F,e) for this stage.

Here is a transition matrix for a long-lived forest tree that is classified into
five size classes:

sizel size2 size3 sized sizeb

szel fpy By B3 Fy Es ]

size2 | P, Py 0 0 0

size3 | ¢ Py Py 0 o0 | Expression 3.19
sized | 0 0 Py Py 0

size5 | 0 0 0 Pys Bss |

Again, there is the possibility that an individual will remain in the same size
class (diagonal elements) or grow to the next consecutive size class (subdiag-
onal elements). All size classes except the first reproduce, giving positive fer-
tility values in the first row of the matrix.

As a final, and more complex, example, consider a population of reef-
building corals with three size classes (small, medium, and large):

small medium large

small P +Fs PustEns Bst+Hs
medium P Pam Bm

large Py P By

m
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As before, the diagonal elements represent the probability that a colony re-
mains in the same size class, and the subdiagonal elements represent the prob-
ability that a colony grows to the next size class. However, there is now the pos-
sibility that large colonies can fragment into medium (Pyy) or small (Pj)
colonies, and that medium colonies can fragment into small colonies (Ppys)-
Small colonies can also fuse with one another, thus “skipping” a stage and
going directly from small to large (Pg)). Finally, look at the first row of the
matrix and notice that the entries are sums of fecundities and stage transitions.
This relationship occurs because the production of small colonies has compo-
nents of sexual reproduction (F) and asexual fragmentation and persistence (P).

As illustrated in Figure 3.4, these complex life cycles can also be repre-
sented in loop diagrams. Each circle in the loop represents a different life his-

(a) Insect
0 0 F,
Py Py 0
0 P la P aa

(b) Forest tree
Py Fpy Fyy Fy Fgy
Py Pp0 0 0
0 Py Pyu0 O
0 0 Py Py O
0 0 0 Py P

(c) Coral
Pss+Fss ans+Fms P15+Fls
Psm Pmm le
Py P Py

Py

Figure 3.4 Stage-transition matrices and loop diagrams for different life histories.
(a) Simplified insect life history. (b) Long-lived forest tree life history. (c) Coral life
history, with sexual and asexual reproduction.
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tory stage, and each arrow represents a transition from one stage to the next.
Stages not connected by arrows have a zero for the corresponding entry in
the transition matrix.

In spite of the complexities of these life cycles, the mechanics of the matrix
multiplication are exactly the same as for the simple Leslie matrix. As long
as the transition elements are constant, the population will eventually exhib-
it exponential growth and a stable stage distribution. However, we can no
longer use the Euler equation for these life histories, and must obtain the
matrix solutions for 7 and the stable stage distribution. For any transition
matrix, A is the dominant eigenvalue. The right-hand eigenvector is the stable
stage distribution, and the left-hand eigenvector is the reproductive value
distribution (Caswell 2001). The matrix approach allows us to use the same
analytical framework to study complex life histories that do not fit a simple
age classification.

Empirical Examples

LIFE TABLES FOR GROUND SQUIRRELS

A long-term demographic study of the Uinta ground squirrel (Spermophilus
armatus) demonstrates the importance of life-table analysis in understanding
population growth (Slade and Balph 1974). At a field station in northern Utah,
squirrels emerged from hibernation each year between late March and mid-
April, depending on the weather. Females bred shortly after they emerged and
established territories. The first young were born in early May, and juveniles
left their natal burrows about three weeks later. During June and July, all age
classes and sexes in the population were active. Adults began hibernating in
July, and by September all squirrels had disappeared underground.
Researchers trapped and tagged all individuals in the 8.9-hectare study
area and monitored their activity from observation towers. The research was
conducted over a seven-year period and divided into two phases. During the
first phase (1964-1968), the population was left undisturbed, except for the
monitoring. Population size fluctuated from 178 to 255, with a mean of 205.
During the second phase (1968-1971), researchers reduced the squirrel pop-
ulation to about 100 individuals. Life-table analysis (Table 3.5) revealed the
dramatic effects of density reduction on growth rate and age structure.
Before the population was reduced, age-specific birth and death rates were
approximately balanced, generating a slightly negative growth rate [r =
—0.046 individuals/(individual « year)]. The maximum life span was approxi-
mately five years, although this varied somewhat between different habitats. In
the stable age distribution, 37% of the population was juveniles (Figure 3.5a), and
reproductive value peaked for individuals during their second year (Figure 3.5b).
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Table 3.5 Life tables for Uinta ground squirrels (Spermophilus armatus) before and
after density reduction.

- ,Pre-reducﬁon: life table - Pbst-rgduction life ‘table ‘
X (years) kl{)‘f) . e kl(x') - b(x) .
s 0 0 a0 g
.. . ..
o s e
... .
. - .. .
s e om0 oG
. .
-

o e

- .
-

Data from Slade and Balph (1974).

After density was reduced, reproduction exceeded mortality, and there
was a substantial rate of population increase [r = 0.306 individuals/(individ-
ual « year)]. The maximum life span increased to seven years, and the stable
age distribution shifted slightly toward older ages (Figure 3.5a). The repro-
ductive value showed a broader peak for three- and four-year olds (Figure
3.5b), reflecting the increased reproduction and survival of older ages.

The density reductions revealed that crowding had many effects beyond a
slowing of population growth rate. Survivorship, reproduction, life span, and
age structure were all sensitive to population density. The manipulations also
point to a key weakness of our exponential growth model: age-specific birth
and death rates change with population size!

Density dependence can be incorporated into either the mortality or the fecun-
dity schedules for one or more age classes. Even if it limits the increase of only a
single age class, density dependence can be an effective brake on total popula-
tion growth, and can lead to complex population dynamics. In the remainder of
this primer, we will return to simple models of populations that do not incorpo-
rate age structure. However, the biological details of migration (Chapter 4), com-
petition (Chapter 5), predation (Chapter 6), and colonization (Chapter 7) almost
certainly reflect the age and size structure within a population.
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Figure 3.5 (a) Stable age distribution and (b) reproductive value distribution for
Uinta ground squirrels (Spermophilus armatus) before and after density reduction.
Data from Table 3.5.

STAGE PROJECTION MATRICES FOR TEASEL

Teasel (Dipsacus sylvestris) is a European perennial “weed” that is common
in abandoned fields and meadows of the eastern United States. The plant has
a complex life cycle that can be described with a stage-based matrix model.
Most seeds fall within two meters of the adult plant, and the seeds may lie
dormant for one or two years. Seeds that successfully germinate form a large-
leafed rosette. The rosette phase is variable and may last for more than five
years. The rosette requires cold-hardening (vernalization) before it will form
a flowering stalk the following summer. Teasel flowers and sets seed only
once, and then the plant dies.

Teasel was studied in eight abandoned fields in Michigan, which were
sown with teasel seed at the start of the study (Werner 1977; Werner and
Caswell 1977). To construct the stage-based transition matrix, individual
plants were monitored in marked plots for several consecutive years. The life
cycle of teasel can be divided into six stages (Caswell 2001):
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1. Dormant first-year seeds

2. Dormant second-year seeds

3. Small rosettes (< 2.5 cm diameter)

4. Medium rosettes (2.5-18.9 cm diameter)
5. Large rosettes (=19.0 cm diameter)

6. Flowering plants

Figure 3.6 gives the loop diagram and corresponding stage matrix for this life
cycle as measured on one of the eight experimental plots. From the positive
entries on the diagonals and subdiagonals, the rosettes can remain in their own
size class, grow to a larger rosette size, or flower. The single entry in the first

Seed (1) Seed (2) Ros (s) Ros (m) Ros (1) Flowering
plant

0 0 0 0 0 322.380
0.966 0 0 0 0 0
0.013 0.010 0.125 0 0 3.448
0.007 0 0.125 0.238 0 30.170
0.008 0 0 0.245 0.167 0.862
0 0 0 0.023 0.750 0

Dormant
seeds (1)

Flowering 0.966

Dormant
seeds (2)

0.010

Rosette
(large)

Rosette Rosette

(medium)

0.238

0.038

Figure 3.6 Transition matrix and loop diagram for teasel (Dipsacus sylvestris).
Transitions are shown for dormant first-year and second-year seeds [seed (1) and
seed (2)], small, medium, and large rosettes [ros (s}, ros (m), ros ()], and flowering
plants. (Data from Caswell 1989.)
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row of the matrix reflects the fact that only the flowering plants can produce
seed. Also, notice that the diagonal element is zero for flowering plants (Pgg),
indicating that they do not survive after they flower. The population growth
rate for this matrix is 4 = 2.3242. This corresponds to an r of 0.8434 individu-
als / (individual « year), with a projected doubling time of less than 10 months.

In contrast to a simple age-classified model, relative frequencies in the sta-
ble stage distribution do not always decrease with later stages. In the stable
stage distribution for teasel, there were more medium than small rosettes
(Figure 3.7a). Reproductive values varied over six orders of magnitude, from
a minimum for second-year dormant seeds to a maximum for flowering
plants (Figure 3.7b).
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Figure 3.7 (a) Stable-stage distribution and (b) reproductive-value distribution for
teasel (Dipsacus sylvestris). Note logarithmic scale. Derived from data in Figure 3.6.
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These same data were also analyzed as an age-classified model, treating
rosettes of 1-4 years as separate age classes (Werner and Caswell 1977).
However, the stage-based model predicted the year of first flowering more
accurately than did the age-based model. The results suggested that the size
of a rosette, rather than its age, is the more important determinant of growth
and survivorship for teasel.

The model results for teasel varied greatly between different fields, and
population growth rates (r) ranged from —0.46 to 0.96 individuals / (individ-
ual « year). Fields with the lowest r had high levels of grass litter, which sup-
pressed teasel seed germination. Population growth rate was also low in
fields with high densities of herbaceous plants, which reduced survivorship
of teasel rosettes through competition and shading. Finally, r was correlated
with annual primary productivity of a field. Population growth rates were
highest in the least productive fields, perhaps reflecting competition with
other plants. The very high rates of increase measured for some teasel popu-
lations are unlikely to be sustained in the long run. As in the ground squirrel
example, a density-dependent model may be more appropriate for forecast-
ing population size.
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Problems

3.1

3.2

Plot the logarithm (base 10) of squirrel survivorship for the pre- and post-
reduction populations (Table 3.5). What is the general shape of these
curves (Type I II, or IIT), and how does density reduction affect survivor-
ship?

Here is a set of hypothetical life-table data for a population of snails:

Agein years(x)  S(x) . bty
0 s
. 44 35

- a. Complete the life-table analysis by calculating I(x), g(x), Ry, G, and the

*3.3.

estimate of r. Calculate the exact value of r with the Euler equation.

b. Determine the stable age and reproductive value distributions for this
life table.

Suppose the snail population in Problem 3.2 consisted of 50 newborns,
100 one-year-olds, and 20 two-year-olds. Construct the Leslie matrix for
this life table, and project population growth for the next two consecu-
tive years.

* Advanced problem



