
tell us much about the dynamics of the system.

There is, however, a difference between popula-

tions described by eqn 3.6 and those that we stu-

died in Figures 3.1–3.7. In eqn 3.6 the effects of

population density act instantaneously on popu-

lation growth rate. In our discrete-time examples

there is an implicit time lag: the level of competi-

tion experienced by individuals in the current

generation is set by interactions that occurred in

the last generation. Such time lags tend to be

destabilizing as they delay the onset of a reduction

in population growth rates as densities climb, and

make it more likely that any equilibrium is over-

shot. Indeed, it is mathematically impossible for a

population governed by eqn 3.6 to show chaos. We

should stress that it is not the difference between

continuous- and discrete-time formalisms that lies

behind the contrasting stability, but the presence of

the time lag. Indeed, in continuous time we can get

exactly the same dynamics by explicitly making

net population growth rates a function of previous

population densities,

dNt

dt
¼ rðNt�tÞNt ð3:7Þ

where t is a time lag of approximately one gen-

eration.

Structured population models with density

dependence can be built using the same matrix,

integral equation, or partial differential equation

approaches discussed in the section on density

independence. Naturally they are more complex,

and often with a greater potential for destabilizing

time lags. Relaxing the assumption that all indi-

viduals are equal also leads to the possibility of

more complicated types of interaction than are

possible for unstructured populations. Competi-

tion may be asymmetric, typically with smaller

individuals suffering disproportionately at the

hands (or roots) of larger individuals. Moreover,

cannibalism is much more common in the animal

kingdom than often realized, and when it occurs it

is nearly always size-related, with older larger

individuals consuming their smaller conspecifics.

Such age-specific interactions have been studied

in detail, particularly in insect systems that can

be maintained in the laboratory for multiple

generations. Many of these systems show popula-

tion cycles with periods shorter than those pre-

dicted by unstructured models (e.g. Figure 3.7).

The details differ with the natural history of the

different systems but a common pattern is for an

older cohort of individuals to reduce the numbers

in a younger cohort by out-competing them for

food or through cannibalism. When the depleted

younger cohort grow old enough to be dominant

competitors or cannibals themselves there are not

enough of them to reduce significantly the next

cohort coming through. This means that the next

group of individuals to mature into the older

cohort are very numerous and decimate the cur-

rent younger cohort, and the cycle begins again.

3.2.1 Chaos

The pioneers of modern mathematical dynamics,

particularly Poincaré at the end of the nineteenth

century, realized that the behaviour of highly

nonlinear systems could be very odd, but in the

absence of computers to help visualize their

dynamics, progress on understanding what was

happening was very slow. When computers began

to become available in the 1960s workers in fields

such as meteorology and ecology were able to see

the complex dynamics produced by beguilingly

straightforward equations, and this led to a burst

of interest in both pure and applied mathematics

that laid the foundations of the modern field of

chaotic dynamics. In population ecology, the clas-

sic paper is May’s Simple mathematical models with

very complicated dynamics (May, 1976a), which not

only introduced the notion of chaos to the field but

showed that lurking underneath the seeming

unpredictability of chaotic dynamics was con-

siderable order and pattern. We shall now explore

a population model of exactly the type that May

analysed.

Chaos has already been encountered in this

chapter as the dynamics that emerge in a simple

discrete-time population model as the population

growth curve (or map) becomes sufficiently non-

linear (the ‘humpiness’ of the curves in Figure 3.7).

Let us now specify a family of curves that can give

rise to the maps in Figures 3.3 and 3.7. For reasons

that will be explained in a few paragraphs it does
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not particularly matter which family we chose, and

we plump for the Ricker equation as it is commonly

used in applied population biology, particularly

for fisheries (Ricker, 1954).

ntþ1 ¼ nt exp½rð1� ntÞ� ð3:8Þ

Here nt is population density (scaled to equal 1 at

equilibrium). When rare the population increases

each generation by a factor exp[r] but as densities

approach 1 the increase slows and above 1 it

reverses. If r is high there is the potential for the

population to overshoot the equilibrium.

We want to picture the dynamics of the whole

system for different values of the sole adjustable

parameter r. To do this, imagine iterating the

equation by cobwebbing as in Figures 3.3 and 3.7

and then throwing away all the transient dynamics,

perhaps the first 50 generations. For Figure 3.3

(corresponding to a value of r¼ 1) the non-transient

dynamics would not be very interesting: it would

simply be a population at stable equilibrium, in this

case n¼ 1. In Figure 3.8 we plot r along the x axis

and the non-transient dynamics on the y axis; for

r¼ 1 there is a single point at n¼ 1. The dynamics

of the population described by the first panel in

Figure 3.7 (r¼ 1.9) differ only in their transient

behaviour and so it too would be represented by a

single point at n¼ 1. Indeed, for the Ricker equa-

tion a stable equilibrium occurs for all persistent

populations with r< 2, which gives the straight line

at n¼ 1 in the left-hand part of Figure 3.8.

The persistent dynamics depicted by the middle

panel of Figure 3.7 (r¼ 2.3) are a two-point limit

cycle: the population oscillates for ever between

two densities, one greater and one less than the

now unstable equilibrium n¼ 1. In Figure 3.8 this

appears as two points. The value of this repre-

sentation now becomes clear because instead of

having to try to compare a large number of cobweb

diagrams we can see at one glance how the

cycles appear at r¼ 2 and then increase in ampli-

tude as r gets bigger. The change of behaviour at

r¼ 2 is called for obvious reasons a bifurcation,

and the representation itself is a bifurcation dia-

gram. We can also see that at r¼ 2.5 a second

bifurcation occurs to give a four-point cycle, and

then further bifurcations at increasingly smaller

intervals of r until a limit is reached. ‘‘What happens

at the point of accumulation [the limit]?’’ is what May

scrawled on a blackboard in the Theoretical Phy-

sics Department at Sydney University in the early

1970s.

May showed that what happens is chaos. As the

third panel in Figure 3.7 illustrates, the trajectory

never converges on a simple cycle but fluctuates

aperiodically around very many values of n, never

repeating itself. This is represented in Figure 3.8 by

a vertical line containing numerous, in fact an

infinite number of, points. Cobwebbing can also be

used to demonstrate a cardinal property of chaos:

namely sensitivity to initial conditions. Start two

trajectories very close together and sooner or later

they will diverge. This is not due to a lack of

computing power: no matter how close the two

initial values they will come to diverge. More

accurate estimation of initial values, so that the
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Figure 3.8 The bifurcation diagram for the Ricker
population model (see the legend of Figure 3.7).
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measured value is close to the ‘true’ value, can

delay the divergence, but not prevent it, and this

means that there is an absolute limit to our ability

to predict into the future the behaviour of chaotic

systems.

The dynamics of a system can be described with

a quantity known as the Lyapunov exponent

(named after a Russian mathematician whose

name is also transliterated Liapunov or Ljapunov).

The Lyapunov exponent describes the rate of

separation of infinitesimally close trajectories; a

positive value means that the trajectories diverge

exponentially, and this extreme sensitivity to initial

conditions is the hallmark of chaos. Algorithms

have been derived to estimate Lyapunov expo-

nents directly from time series (Wolf et al., 1985)

and have proved very valuable, especially in the

physical sciences where relatively long time series

are typically easier to obtain.

Bifurcation diagrams are beautiful objects that

contain a wealth of mathematical detail. They have

quite literally been the subject of tens or possibly

hundreds of mathematics PhD theses. Our focus

here is on their relevance to biology and we have

space to mention only a very few more technical

results. First, May and others showed that the

patterns in Figure 3.8 do not just apply to the

Ricker equation but to a very broad class of models

that all show the same transition through period-

doubling from order to chaos (May, 1973a, 1974c;

Li and Yorke, 1975). There is a limited number of

routes to chaos and one can derive general results

that apply to very many systems. For example, the

ratio of the interval of r values in which two-point

cycles are found and in which four-point cycles are

found is 4.6692. In fact the same ratio is found for

every adjacent interval (four-point/eight-point,

etc.) not only for the Ricker equation but for every

map that shows this type of transition from order

to chaos (Feigenbaum, 1978). Second, if you look

closely at the bifurcation diagram to the right of

the accumulation point you see that the region of

chaos contains intervals of simpler dynamics,

including period-three cycles that undergo their

own transition back into chaos. In fact there is an

infinite number of narrow, periodic windows.

Finally, the bifurcation diagram has fractal struc-

ture: enlarge part of the region of chaos and you

will see a complex pattern of bifurcations, aper-

iodic and period trajectories; chose part of this

picture and enlarge yet again and the same pat-

terns appear in miniature, and so on ad infinitum.

The beauty of bifurcation diagrams is fragile: add

a little stochastic noise—inescapable in real biolo-

gical systems—and their more rococo patterns dis-

appear. However, the extreme sensitivity to initial

conditions, the signature of chaos, remains. So

while it is not mathematically true that the Ricker

model predicts chaos for all r> 2.69 it might as

well be for any biological purposes. Another bio-

logically relevant property of chaos is also shown in

Figure 3.8. Although precise prediction is not

possible the different population trajectories are

bounded, that is they cannot become arbitrarily

large or small. A pure random walk would not be

bounded (except of course by n¼ 0). Indeed, it is

sometimes possible to calculate the probability

distribution of different population states. Depend-

ing on the system this may be valuable information

for ecologists and population managers.

Chaos is not just a property of discrete-time

systems and chaos in continuous time systems has

also been extensively studied. Consider the non-

transient behaviour of a continuous system. If the

system is at equilibrium this will be a simple point

but if there are persistent cycles or chaos then it

will be a continuous line. For single-species

populations this line can be plotted in a space

where the coordinates are population densities

now and at times in the past. For example, on a

three-dimensional graph the coordinates might be

densities now, 1 month ago, and 2 months ago. In

this space a cycle will be a closed loop while a

chaotic trajectory will be an object such as that on

the left of Figure 3.9. This object looks like a

twisted diaphanous sheet and is a fractal: succes-

sive magnifications of parts of the sheet show the

same self-similar pattern. One point to note is that

chaos occurs in simple (ordinary) differential

equations only for systems of three or more vari-

ables: the dynamics of a two variable-system can

be described in a two-dimensional space which

does not allow for the twisting and mixing of tra-

jectories that are the hallmarks of chaos.

There is a close link between chaos and fractals.

Objects that represent the non-transient behaviour
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of a dynamic system are called attractors (because

trajectories originating elsewhere in state space are

attracted to them). In continuous time, points

(stable equilibria) and closed loops (cycles) are

examples of normal attractors whereas fractal

objects such as that in Figure 3.9 are termed strange

attractors. All chaotic systems are governed by

strange attractors and, as we shall return to

shortly, determining that a system’s attractor is

fractal is one way of identifying chaos in nature.

The attractor in Figure 3.9 also provides an insight

into why chaos is always associated with extreme

sensitivity to initial conditions. The right-hand

panel in Figure 3.9 is a cartoon to illustrate the

evolution of a set of initially very similar trajec-

tories: the bundle marked 1, which should be

imagined as lying flat on the horizontal surface of

the attractor in front of the line X. Flow on the

attractor occurs in the counter-clockwise direction

and sets of points are first stretched (2, 3) and then

folded (4, 5). If you imagine this occurring

numerous times it is easy to see how trajectories

that start off near each other quickly become

separated. The degree of stretching in a system is

quantified by the Lyapunov exponent.

Chaos in continuous- and discrete-time systems

is intimately related. Consider the section X

(called a Poincaré section) through the attractor

in Figure 3.9. If the position along the section is

treated as a variable, and if the position in the

current traverse is plotted against that in the pre-

vious, one arrives at a map exactly equivalent to

the chaotic Ricker map discussed above. Now,

however, the r parameter is not simply a measure

of single-species fecundity, but a more complex

amalgam of the life histories of all species or

development stages that influence the dynamics.

How might one seek to decide whether natural

populations are chaotic? Typically this has to be

done from time-series data, which at least in

comparison with data from the physical sciences

are inevitably of relatively short duration. There

are two broad approaches. The first is to try to fit a

flexible population model to the time-series data

and then to determine by iterating the model

whether the dynamics are chaotic. The second is to

try directly to reconstruct the attractor governing

the system and determine whether it is fractal.

Both approaches are helped by a very important

theorem (Takens, 1981) that states that the attractor

of a multi-species or complex single-species inter-

action can always be reconstructed from single-

variable time-series data in a space made up of

a sufficient number of time-lagged dimensions

(i.e. the coordinates are densities at time t, t� t,
t� 2t . . . where t is a lag). The major proviso is
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X

Figure 3.9 Chaos in continuous time. The object on the left is a strange attractor describing the flow of trajectories of a continuous-time
system in three-dimensional space (the Rössler attractor). X is a Poincaré section discussed in the text. The cartoon on the right describes
how bunches of nearby trajectories become stretched and folded as they move around the attractor. See text for further details.
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that you have to have sufficient data, which in

practice is usually a very demanding requirement.

The first attempt to fit models to data did not

use time series but life-history data on fecundity

and density-dependent mortality. Hassell et al.

(1976) fitted a two-parameter model to data from

24 species of insects with reasonably discrete

generations and concluded that the vast majority

had stable dynamics, indeed not even showing an

oscillatory return to equilibrium. Although the

authors were at pains to stress the provisional

nature of their conclusions, this paper had a very

major impact, and to a certain extent inadvertently

licensed ecologists to treat chaos as a theoretical

curiosity for the next decade.

The next major attempt to search for chaos used

model-free approaches and was spurred by the

growth of empirical chaos studies in the physical

sciences (Schaffer, 1985; Schaffer and Kot, 1985a,

1985b; Olsen and Schaffer, 1990). The basic idea

was to reconstruct the attractor by embedding the

time series in time-lagged coordinates and then

either to take a Poincaré section and look for a one-

dimensional chaotic map, or to estimate the

attractor dimension. In our daily lives we do not

normally need tests to tell us whether an object is

one-, two-, or three-dimensional but mathemati-

cians who often work in much higher dimensional

space have derived algorithms to estimate arbi-

trary dimensionality. When these are applied to

fractal objects they return a non-integer dimension.

A non-integer dimension implies a fractal and a

fractal implies chaos. Though clearly worth trying,

ultimately this research programme was defeated

by the quality of the data available. To quote

Schaffer (2000), ‘Only in the instance of recurrent

outbreaks of measles in human populations, was

there sufficient data to justify our initial enthu-

siasm’ and, he added, even here the argument

chiefly rested on the comparison of time-series

data with the output of epidemiological models.

In the last 15 years, interest has grown again in

the challenge of detecting chaos from time series.

Sugihara and May (1990) developed a technique

called nonlinear forecasting which measures the

extent to which predictability decays with time. In

chaotic systems this occurs in a characteristic way

determined by the magnitude of the Lyapunov

exponent. This method has since found wide

application beyond biology in econometrics.

Model-based approaches have also enjoyed

renewed attention. One strand has sought to

develop more accurate mechanistic population

models, capitalizing on both the more powerful

computing tools now available and statistical

advances in extracting parameter values from

data. A different strand, with similarities to Sugi-

hara and May’s approach, fits very flexible non-

mechanistic population models to time-series data

typically using response surfaces that are opti-

mized either by traditional least-squares methods

or more exotic techniques such as thin-plate

splines or neural nets (Ellner and Turchin, 1995).

The magnitude of the dominant Lyapunov expo-

nent is calculated directly from the fitted model. It

is still too early to judge the long-term value of

these methods, although they have revealed a

number of systems with apparent chaotic dynam-

ics, in particularly involving human–disease and

predator–prey interactions.

For single-species interactions, the best examples

of possible chaos involve laboratory systems,

including Nicholson’s famous long-term blow fly

experiment. A very nice experimental example is

the work of Costantino et al. (1997) on the flour

beetle, Tribolium castaneum. Recall we mentioned

above that strong interactions between different

life-history stages can give rise to complex

dynamics. In Tribolium, adults and larvae canni-

balize eggs while adults also eat pupae. A popu-

lation model showed that by varying a single

parameter (pupal mortality) the dynamics of the

system moved from stability to chaos and then to a

three-point cycle. Figure 3.10 shows that experi-

mentally manipulating pupal mortality leads to

dynamics that look very like those predicted. It is

true that this is a highly artificial system, yet it is

an impressive demonstration that the dynamics of

these insects have been understood.

3.3 Randomness

3.3.1 Types of random effect

Real animals, plants, and micro-organisms are

continually buffeted by the effects of random
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processes and a critical question in population

biology is the extent to which insights gained from

the analysis of deterministic models survive the

insults thrown at them by stochastic nature.

There are a variety of different ways in which

random or stochastic effects can influence popu-

lation dynamics (May, 1973a). Perhaps the most

straightforward is environmental stochasticity,

where the value of a demographic parameter

changes over time. Recall the density-independent,

discrete-time model Ntþ1¼Ntl where l is the

annual population growth rate. This model impli-

citly assumes that the value of l is constant, but in

fact it will almost certainly vary from generation to

generation; we might better write the equation

Ntþ 1¼Nt lt to emphasize this fact. Note that

environmental stochasticity affects the demo-

graphic rates of all individuals in a population in

the same way, and that this effect is independent

of population size (Lande et al., 2003). Much

research in identifying factors generating envir-

onmental stochasticity has focused on climate

(Stenseth et al., 2002), although in principle any

other factor with unpredictable effects on popula-

tion parameters can contribute to this process.

Let us return to the discrete-time model of a

population with non-overlapping generations,

Ntþ 1¼Nt l, and for the sake of argument assume

that the value of l is actually constant over time.

But this does not mean that every single individual

in the population will produce exactly l female

offspring. In the real world there will always be

some between-individual variation or demographic

stochasticity. For example, consider a parasite that

searches randomly for hosts into which it lays a

single egg; if the average parasite lays l female

eggs then some will by chance discover more hosts

and some by chance fewer. This is a Poisson pro-

cess where the variance is the same as the mean.

One can imagine other natural histories where

the variance is much less than a Poisson process

(vertebrates that normally produce one offspring

a year) and others where the variance is much

greater (organisms living in a highly hetero-

geneous environment). Now suppose the popula-

tion is small: by chance all individuals in one

generation may experience low reproduction and

so the following year the population size would

be significantly less than the expected Nt l. Of

course, the probability of simultaneous episodes
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Figure 3.10 Time series of the number of larval
beetles in laboratory populations for different rates of
pupal mortality which were artificially manipulated.
Theoretical models predict that the population in
panel a should have a stable equilibrium, panel b
should be chaotic, and panel c should have a three-
point cycle. The experimental data show good
agreement with the predictions (after Costantino
et al., 1997).
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of good or bad luck become progressively more

unlikely in larger populations and hence demo-

graphic stochasticity is most important in small

populations. In many ways, its action is similar to

drift in population genetics.

A further random process that is sometimes

distinguished is catastrophic stochasticity: random

events that destroy the whole population irre-

spective of its size or current demographic

parameters. We shall not discuss this type of ran-

domness further here, although it is particularly

relevant to studies of metapopulations (see

Chapter 4 in this volume) and also in conservation

biology where populations may be wiped out by

human action that can at least be approximated as

a random process.

3.3.2 Density-independent populations

Let us now see how stochasticity affects popula-

tion growth rate and population projection. For

ease of explanation we shall stick to discrete-time

models although the same principles apply to

populations that reproduce in continuous time.

Return once again to the model Ntþ 1¼Nt lt where

the subscript to the population growth rate

emphasizes that it varies between generations,

specifically with mean �l and variance sl. This is

the way that randomness is most frequently dealt

with in population models, and has been referred

to as the equilibrium treatment of noise (Coulson et

al., 2004). If we take logarithms then we can write

Log½Nt� ¼ log½N0�þ
X

t�1

x¼0

log½lx�: ð3:9Þ

If the values of l vary independently over time,

then the right-hand term is the sum of indepen-

dent random variables, which the Central Limit

Theorem tells us is asymptotically normally dis-

tributed. This implies that population size itself is

lognormally distributed. There are some com-

plexities in calculating long-term population

growth rates in this case (Lewontin and Cohen,

1969). An intuitive procedure might be to see

how expected population size grows with time. A

simple calculation reveals it increases exponen-

tially at a rate determined by �l. But the expected

population size is dominated by very rare, huge

population sizes in the upper tail of the distribu-

tion. In fact the modal population size, the popu-

lation size that will actually be observed in the

field, grows not at a rate determined by the simple

arithmetic mean, �l, but the geometric mean

l0 �l1 �l2� � �lt�1ð Þ1=t.
Several biologically interesting results follow

from this. First, as long as there is some variance in

l the geometric mean will always be lower than

the arithmetic mean: poor years have a greater

negative effect on population growth than the

positive effect of good years. Second, a single year

with zero net reproduction (l¼ 0) renders the

long-term growth rate 0. This makes intuitive

sense as the population goes extinct, but note that

this is not what a calculation based on the arith-

metic mean would suggest. Finally, recall that in

the deterministic case persistence was very

straightforward: a population would increase if

l> 1 and decrease if l< 1. The situation is now

more complicated: populations with geometric

mean growth rates less than one will always ulti-

mately go extinct, but some may persist for a long

period of time if by luck they experience a chain of

propitious years. Similarly, although populations

with geometric growth rates greater than 1 will

tend to persist, some will by bad luck go extinct. In

fact populations which will, on average, grow to

infinity also have a probability of extinction of 1 for

very long periods of time. This can be seen very

simply: if E(Nt)¼T2, where t represents time and T

is the length of time since the simulation began,

the probability of extinction can be written as

1� 1/T. When T gets very large, the expected

population size tends to infinity and the prob-

ability of extinction tends to unity as 1/T approa-

ches 0. It is possible to calculate the distribution of

persistence times of populations governed by dif-

ferent distributions of growth rates, and this may

be helpful in population management.

In many ways the population effects of demo-

graphic stochasticity are similar to its environ-

mental counterpart. It will increase the variance in

l and so tend to reduce long-term growth rates,

and increase the probability of extinction by bad

luck. The major difference is that its effects become

very weak as population size increases. Indeed, the
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total variance in reproductive rates can be thought

of as the sum of two components, VE (environ-

mental stochasticity) and VD/N (demographic

stochasticity divided by population size). A rea-

sonable rule of thumb is that demographic sto-

chasticity can be ignored for populations with

more than 50 or so female breeders, though note

that the population size of large carnivores, even in

extensive nature reserves, can often be below this

threshold.

We stated above that we were assuming that

stochastic effects were uncorrelated over time.

Often this will not be the case, especially for short-

lived organisms that might, for example, have

several generations in a single summer. Quite

frequently there will be a positive correlation

between the random component of population

growth rates in successive seasons (the term red

noise is sometimes used for these positively corre-

lated random effects). The most important effect of

correlated stochasticity is to increase the severity of

poor breeding seasons that now tend to follow one

another. We note in passing that correlated red

noise may lead to patterns in population dynamics

that may be very hard to distinguish from an

underlying deterministic cause, especially in

structured populations. There can also be correla-

tions between environmental and demographic

stochasticity, in particular the effect of demo-

graphic stochasticity on population growth may be

higher in years when the consequences of envir-

onmental stochasticity are most severe, a clear

concern in conservation biology.

The arguments above apply also to structured

populations, though with some complications.

First, there is no longer a simple relationship

between arithmetic and geometric population

growth rates, but a stochastic equivalent to the

deterministic growth rate can be calculated

(Tuljapurkar, 1982). As with the unstructured pop-

ulation, adding stochastic effects always reduces

long-term growth rates. Second, certain age or

stage classes may be much more susceptible to

stochastic perturbation than others. Random

effects may thus lead to perturbations that disrupt

the age-structure of the population (structural

variance; Coulson et al., 2001; Lande et al., 2002).

Here, stochasticity influences the population

dynamics via two routes. First, stochasticity has a

direct effect on the size and structure of the current

population. Second, these changes influence the

future trajectory of the population. This interaction

between stochasticity and the deterministic skele-

ton is sometimes referred to as the active treatment

of noise, and is currently an area of considerable

interest in population biology research. Such

effects always reduce the tendency of the popula-

tion to reach a stable age distribution and, in

anticipation of the next section, can also have

important consequences on population regulation

if the strength and action of density dependence is

also influenced by population structure.

3.3.3 Density-dependent populations

In a real stochastic environment a population is

highly unlikely to remain at the exact same equi-

librium value from one generation to the next. But

it is still reasonable to talk about an equilibrium if

populations above a certain value tend to decline

in numbers, and those below the same value tend

to increase. Conceptually we can think of an

equilibrium not as a fixed population density, but

as a probability distribution that remains the same

over time and which determines the likelihood of

observing the population at any particular level of

abundance (Turchin, 2003). Of course, we should

also consider the possibility that a population,

even one that tends to increase when rare, goes

extinct through a run of bad breeding seasons.

More generally, stochastic effects can cause a

population to shift from one type of dynamic

behaviour to another. Figure 3.5 depicted the

dynamics of a species with two locally stable equi-

libria; it is possible that a sufficiently large random

perturbation can move the population from the

domain of attraction of one equilibrium to that of

the other. Similarly, where there is an Allee effect a

species is unable to increase in density when rare so

zero population density is locally stable; random

effects can push a species density below the critical

threshold that leads to extinction. It is also possible

that a species that for some reason has fallen below

the threshold can be rescued by a random set of

good breeding seasons. Of course, even when a

species can increase when rare, stochastic extinction
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is permanent if there are no sources of migrants to

rescue the population. This treatment of stochasti-

city in population models has been called the pas-

sive treatment of noise.

The shape of the equilibrium probability dis-

tribution of abundances will obviously be deter-

mined by the magnitude and direction of the

stochastic perturbations to the demographic para-

meters, but also by the dynamic consequences of

the perturbations; that is, the interaction of the

noise with the deterministic dynamics. Consider

unstructured populations with deterministically

stable equilibria which are approached either

smoothly (Figure 3.3) or by damped oscillations

(Figure 3.7a). It is very likely that the first popu-

lation will tend to return towards the equilibrium

faster than the population with damped oscilla-

tions, and for the same amount of environmental

stochasticity will have a lower variance equili-

brium population density. A population with an

oscillatory approach to a stable equilibrium can

more easily be prevented from reaching that

equilibrium and thus appear to the observer to be

persistently cyclic. This type of dynamic behaviour

has been termed quasicyclic (Nisbet and Gurney,

1976) and has been seen in several experimental

systems, including the flour beetle study described

above as an example of chaos (Costantino et al.,

1997).

Consider an unstructured dynamic system that

is at the edge of chaos, perhaps showing persistent

cycles. If one or more parameters were changed

slightly, it would move from persistent cycles into

the region of chaos where its dynamics would be

governed by a strange attractor. Near this thresh-

old, the transient behaviour of the population

before it settles into persistent cycles can be very

complex. Although in this region there is not a

strange attractor, dynamics may be influenced by

an object called a strange repeller (Rand and Wilson,

1995), which like a strange attractor is a fractal, but

repels rather attracts dynamic trajectories. One can

think of the system like the ball in a pinball

machine, careering from buffer to buffer, perhaps

for a significant period of time. Indeed, this beha-

viour may go on for ever if stochastic perturba-

tions are large enough to prevent the system ever

from settling on the stable cycles. The time series

produced by such a process can be indistinguish-

able from chaos: it can show exactly the same

extreme sensitivity to initial conditions, and

attempts to reconstruct the attractor would suggest

that it had a non-integer number of dimensions.

In discussing the bifurcation diagram in Figure

3.8 we already noted how random effects would

interact with the deterministic component of the

dynamics to give chaotic population behaviour

throughout the region beyond the ‘point of accu-

mulation’, even though here there are narrow

windows of cyclic behaviour. As with chaotic

repellers this is another example of the impossi-

bility of separating the deterministic and stochastic

aspects of population dynamics in general and

chaos in particular.

Although it may seem unarguable that we

should seek to develop models with both sto-

chastic and deterministic components, exactly how

to do this is not always obvious. For example,

adding one type of noise to a model with a

deterministically stable equilibrium and a different

type of noise to a model governed by a chaotic

attractor can produce dynamics that equally well

match the type of data that ecological field studies

produce. Also it is often not clear how stochasticity

should be introduced into the model, onto which

demographic parameters, and with what correla-

tion structure. Nevertheless, we are optimistic

about the future. For the analysis of time series and

other observational data there are a variety of new

statistical methods and techniques that will help

identify the major stochastic drivers, and reveal

how they interact with the underlying biology of

the species (Coulson et al., 2001; Lande et al., 2003;

Turchin, 2003; Stenseth et al., 2004). There is also an

increasing willingness of ecologists to experiment,

both in the laboratory and the field, and to inte-

grate modelling with experimental design and

analysis.

34 T H EOR E T I C A L E CO LOGY


