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Introduction

A great deal of research in community ecology documents patterns of species
diversity and how these patterns differ in time and space (Rosenzweig 1995).
These data are used to study how communities are assembled, and to address
the accelerating loss of biodiversity in the face of the ever expanding human
population. For example, at large spatial scales, more species of plants and
animals can be found in the Tropics than in temperate latitudes (Hillebrand
2004). At small spatial scales, species richness and evenness often differ
between locations with high versus low nutrient inputs (Huston 1980), and
between locations with and without top predators (Sergio et al. 2005). Dozens
of mechanisms have been proposed for these kinds of patterns (Rohde 1992).

Most ecology textbooks provide a catalog of species diversity patterns, a
set of hypotheses to account for these patterns, and individual case studies
that illustrate the patterns and test the mechanisms. This chapter will address
a more basic question: How do we quantify species diversity? Before we can
study something with the scientific method, we have to be able to quantify
it, and that turns out to be surprisingly difficult to do in biodiversity studies.

A WALKTHROUGH THE WOODS

Suppose we walk through a New England woodland and randomly sam-
ple 100 ants from the forest floor and low vegetation (Ellison et al. 2007).
We preserve each specimen we collect in a small vial of ethanol, which
includes a labe] listing the date of collection; the habitat; and the latitude,
longitude, and elevation of the study site (which we would measure from a
GPS unit or from a topographic map; see Agosti et al. 2000 for protocols).
Back in the laboratory, we examine the specimens under the dissecting
microscope and identify them each to species, using published guidebooks
and taxonomic keys (Coovert 2006, Fisher and Cover 2007) as well as Web-
based resources (antbase.org; Agosti and Johnston 2005). Because species
identification is often a difficult task for an ecologist (Gotelli 2004), we
might spend a few days working at a nearby natural history museum,
where we could compare our specimens with a large reference collection of
previously identified species and consult with taxonomic specialists who
are experts in ant identification.

When we have finished our identifications, these data can be organized
into a table in which each row is a species. The first column gives the species
and genus name, and the second column gives the number of individuals col-
lected (Table 9.1). These data can be plotted in a rank abundance graph. We
first order the species from most abundant to least abundant, and put them in
rank order on the x axis of the graph. We then draw a bar to represent each
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Table 9.1 Hypothetical biodiversity data. This table represents the sim-
plest kind of data collected in a biodiversity survey. Although this is a
hypothetical data set, the species list and rank order were those found in
a survey of ant species in a New York oak forest (see Ellison et al. 2007).

 Ant speciés - Number of individuals collected
Aphaenogaster rudis 45
Formica neogagates - ; »
Muyrmica punctiventris ; 12

Miprmica sculptilis
Formica subsericen
Stenaming iinpar
Temnothorax longispinosus
Lasius alienus

Lasius umbratus

M s o

Prenolepis imparis

species. The height of the bar is the abundance of each species, which is mea-
sured on the y axis (Figure 9.1).

This rank abundance graph contains all of the essential biodiversity infor-
mation, and allows us to see the two components of biodiversity, species rich-

Abundance

Species rank

Figure 9.1 Rank abundance graph of the data in Table 9.1. Each bar represents a dif-
ferent species. The height of each bar is the abundance of the species in the sample.
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ness and species evenness. Species richness refers to the number of species in
the sample, which is simply the number of bars in the graph (10 in this exam-
ple). Species evenness refers to the relative heights of the bars. In a maxi-
mally even sample, all species would be represented by the same abundance
level. In this example, a maximally even distribution would be one in which
each of the 10 species were represented by exactly 10 individuals each. A
maximally uneven distribution would have the first species represented by
91 individuals and the remaining 9 species represented by 1 individual each.
Both distributions contain 10 species and 100 individuals, but the first collec-
tion seems more diverse because the species evenness is higher.

Most real samples fall somewhere between these extremes of evenness. In
this example, the two most abundant species are represented by 45 and 32
individuals, and the four most rare species are each represented by one indi-
vidual. This is a typical pattern: most samples are dominated by a small num-
ber of species that comprise the bulk of the abundance or biomass of the
assemblage. The other species in the assemblage are much rarer—some
species may be represented by only one or two individuals each. The result-
ing rank abundance graph often has a long right-hand “tail” that reflects the
abundances of the rarer species in the assemblage (McGill et al. 2007). As we
will see later in this chapter, these rare species contain important information
about “missing” species: species that are present in the assemblage but are
so uncommon that they did not show up in our particular sample.

The Organization of Biodiversity Data

In order to develop a quantitative framework for describing biodiversity, we
need a conceptual model for how diversity is organized in nature. Our model
will be that a community consists of discrete, individual organisms. Each
organism can be recognized as belonging to a distinct “type,” usually a
species. Alternatively, individuals could be grouped into higher taxonomic
units, such as genera or families. This is a common practice for fossil assem-
blages, where it is not always possible to identify specimens to the species
level. We can also quantify biodiversity at taxonomic levels other than the
individual and the species. For example, instead of counting individuals, we
could count species and classify them into genera or other taxonomic units.
Other classification schemes that are not based on evolutionary relationships
can also be used, such as trophic status (producer, herbivore), functional sta-
tus (grazer, filter feeder), or growth form (shrub, tree). Whatever the group-
ing, each individual is recognized and counted as a distinct entity and is
assigned unambiguously to only one of the categories in the classification
scheme.
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To introduce some quantitative notation, suppose our sample consists of
N individuals that represent S species. We rank these species in order of
abundance from i = 1 (the most abundant) to S (the least abundant). Let n; =
the abundance of the ranked species i. Note that:

N = Zni Equation 9.1

We also define the proportion p; of the total assemblage that is represented
by species i as:

v ~ Equation 92

Because these p; values are proportions of the total N, they sum to 1.0:
S
1.0= z p; Expression 9.1
i=1

This framework of recognizing, classifying, and counting individuals
works well for most sexually reproducing animal species. However, there are
many plant and invertebrate species, such as grasses and corals, that grow
and reproduce asexually, as clones or colonies. For these kinds of organisms,
we cannot count discrete “individuals,” so species diversity is usually quan-
tified by measuring the percent cover or the biomass of each species in a sam-
ple. Unfortunately, we cannot use percent cover or biomass data for the mod-
els in this chapter, which are based on the sampling properties of discrete
entities (i.e., individuals). Near the end of this chapter, we will discuss a
method for quantifying biodiversity that can be used with data that do not
represent counts of individual organisms.

THE CANDY JAR OF DIVERSITY

A good analogy for quantifying biodiversity is to think of the environment or
habitat that contains the community as a large candy jar full of multicolored
jelly beans (Longino et al. 2002). Each jelly bean represents an individual
organism, and the different colors represent the different species present in
the community. The complete information about biodiversity in this commu-
nity would then consist of the total number of jelly beans, the total number of
jelly bean colors, and the number of jelly beans of each color in the jar. These
quantities would correspond to the total number of individuals, the total num-

ber of species, and the relative abundance of each species in the community.
Unfortunately, nature’s candy jar is so large we can never count everything
that is inside it. Instead, we have to make inferences about what the ent%g»jﬁt
S B
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contains based on a sample of jelly beans taken from the jar. When we com-
pare two communities, we are effectively drawing a handful of jelly beans
from each of two jars and trying to describe how the contents of the two jars
differ based on our analysis of the samples.

We face two problems in trying to sample biodiversity from the candy jar.
The first problem is that the more jelly beans (individuals) we sample, the
more colors (species) we will find; unless we are very careful about the counts
of individuals that are used to estimate species number, we can be led astray.
In particular, we expect to find more species in a large sample of individuals
than in a small sample. Therefore, if two communities differ in the number
of individuals that are sampled from each, we cannot necessarily conclude
that the larger sample has more species in it.

The second problem is that the relative abundance of different species in
an assemblage is rarely perfectly even—that is, we almost never find that all
the resident species in a community have equal abundances. In most commu-
nities, there is a small number of species that are very common and a large
number of species that are uncommon or rare. In other words, the candy jar
may contain a few colors that are relatively common, but most colors may be
represented by only a few jelly beans (or even a single jelly bean). If we sample
only a small handful of jelly beans, we will mostly get the common colors. If
we want to collect the rare colors, we will have to take a larger sample (or
more samples).

CARABID BEETLES IN PINE PLANTATIONS

A case study from northern Europe will illustrate these issues more clearly.
Niemeld et al. (1988) sampled carabid beetles with a set of pitfall traps placed
in young (< 20 years old) pine plantations and in old (20-60 years old) pine
plantations. The first three columns of Table 9.2 give the number of individ-
uals of each beetle species collected in the two habitats.

There are several interesting patterns in these data. First, in both habitats
there are a number of rare species, represented by only one or two individuals.
As we will see, these singletons and doubletons are important numbers for
estimating total species richness in the assemblage. At the same time, there are
a handful of very common species. In, the young-plantations data, the four
most common species (Calathus micropterus, Trechus secalis, Pterostichus oblon-
gopunctatus, and Pterostichus adstrictus) accounted for 49% of the 243 individ-
uals in the sample {100 x [(48 + 30 + 23 + 23)/243]}. In the old-plantations data,
the two most common species (Calathus micropterus and Trechus secalis)
accounted for 70% of the 63 individuals sampled {100 x [(29 + 15)/63]}.

A total of 31 species was collected in the young plantations, whereas only
9 species were collected in the old plantations; thus it appears that young
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Table 9.2 Number of individuals of carabid beetle species captured in pitfall traps
in young and old pine plantations in northern Europe. A blank space indicates that
zero individuals of that species were collected. The third column gives the results
for a random draw of 63 individuals from the young-plantations sample. (Primary
data from Niemeld et al. 1988.)

. ~ Random draw from
Young = Old young-plantations

Beetle species . plantations = plantations sample
Calathus micropterus 0 ]
- Pterostichus oblongopunctatus 23 5 5
‘No‘tiophilus biguttatus .. - 1 ' ~
- Carabus hortensis . 2 1
Carabusglabratys. = 15 | 6
Cychruscaraboides . 6 1 2
Amara brunnea 5. 1
Trechus secalis 3 15 13
Leistus terminatus ; 3 1 1
Amara familiaris L .
 Awmara lunicollis ‘ 7 .
Bembidion gilvipes > 1
Bradycellus caucgsicus 1 -
Calathus melanocephalus 3 1
 Carabus nitens ‘ 1 -
Carabus violaceus i ~'
 Cicindela sylvatica - 10 2
Cymindus vaporariorum .3 1
Harpalus quadripunctatus v -
Harpalus sp. _ L 1
Leistus ferrugineus 1 .
Miscodera arctica 13 5
Notiophilus aestuans o 2
 Notiophilus germinyi 9 1
Natiophilus palustris -9 1
. Pterostichus adstrictns 3 5
Pterostichus cupreus 1 1
 Pterostichus diligens L 2 .
_ Pterostichus niger 7 .
Pterostichus strenuus 4 4 1
Synuchus vivalis , 4 . ‘
 fomlmdivdige 23 e 63
(abunidancs) . ..
Total species 4 0 . 3y

{species richness)
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plantations support more beetle species. But is this conclusion valid? The 31
young-plantation species came from a sample of 243 individuals, where as
the 9 old-plantation species came from a sample of only 63 individuals. So is
it really surprising that we should find more species in the young plantations,
from which we collected almost four times as many individuals?

Notice also that the species composition of the old plantations is a nested
subset of the young plantation sample: every species represented in the old
plantations is also present in the young plantations. However, there are many
species found in the young plantations that were not collected from the old
plantations.

These patterns suggest a simple null hypothesis: perhaps total species rich-
ness does not differ between young and old pine plantations. Instead, the dif-
ference in observed species richness between the two samples might simply
reflect the different number of individuals collected in the two habitats. In
other words, the old-plantations data might represent “a smaller handful of
jelly beans drawn from the same jar.” How can we test this null hypothesis?

Rarefaction

The candy-jar sampling analogy suggests a straightforward way to compare
diversity in the two plantations. Suppose we had sampled only 63 individu-
als each from both the old and young pine plantations. Then the comparison
of species richness would be valid because the sampling effort would be
identical for both assemblages; any observed differences in species richness
would not be confounded by differences in abundance. We cannot go back
to the pine plantations and sample again, but we can randomly draw 63 indi-
viduals from the young-plantations data and see how many species are pre-
sent. Note that we are effectively taking a random subsample of data that are
themselves a small sample of the community.

We could fill a real candy jar with 243 colored jelly beans to match the data
in Table 9.2, and then randomly draw a handful of 63 jelly beans and see how
many colors (species) we get. Or, we can write a short computer program to
do the same thing. The program conducts a random draw from the list of
individuals, sampling without replacement (meaning that once a particular
individual is drawn from the list, that same individual cannot be drawn a
second time). Column four of Table 9.2 illustrates what we get from a single
random subsample of 63 individuals from the young-plantations data. This
subsample contains 20 species—certainly less than the 31 species observed
in the original sample, but still quite a few more than the 9 species observed
for the sample of 63 individuals from the old plantations. This method of
drawing a random subsample and generating from that subsample the
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expected species richness (or any other diversity statistic) is called rarefac-
tion (from the word rarefy, which means “to thin” or “to make less dense”).

Of course, a different random subsample would contain a different mix of
individuals and therefore may contain a different number of species. If we
repeat the sampling process 1000 times, we generate a histogram of species-
richness values, shown in Figure 9.2. Notice that, although we are sampling
each individual without replacement, all those individuals are returned to
the jar when we begin the next random subsample (sampling with replace-
ment). The species richness values in Figure 9.2 range from 13 to 28. In other
words, out of 1000 simulations of a random draw of 63 individuals, one of
the simulations contained only 13 species and another contained 28 species.
Thus, the single simulation illustrated in the fourth column of Table 9.2 was
fairly typical, with 20 species represented. The average of the 1000 simula-
tions was 19.92 species, and 95% of the random draws generated between 16
and 24 species.

Number of simulations

15 20 25

Number of species

Figure 9.2 Histogram of 1000 random subsamples of species richness. A total of 63
individuals were randomly drawn from the list of beetle species for the young-plan-
tations data in column 2 of Table 9.2. Column 4 of Table 9.2 illustrates the results of
one such random draw. The histogram shows the distribution of species richness
values from these simulations. The range was from 13 to 28 species. The average
was 19.92 species, with a 95% confidence interval of 16 to 24 species. Notice that all
these values are considerably greater than the 9 species represented by the 63 indi-
viduals sampled from the old plantations (column 3 of Table 9.2).
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Notice that this 95% confidence interval (16 to 24) does not include the
number 9, which was the number of species observed in the sample of 63
individuals from the old plantations. In other words, a random draw of indi-
viduals from the young plantations is very unlikely to have generated a sam-
ple with only 9 species. Therefore, when the old and new plantations are
compared using samples of 63 individuals for both, there are significantly
more species in the young plantations. The null hypothesis (that species rich-
ness does not differ between the two plantation types) can be rejected with
these data.

EXTENDING THE RAREFACTION CURVE

In the beetle example, we rarefied the original young-plantations sample of
243 individuals down to a subsample of 63 so that we could make a valid
comparison with the old-plantations data. However, a complete rarefaction
curve can be extended down across the entire range of abundances. In this
case, the rarefaction curve is drawn as a graph with abundance (number of
individuals) on the x axis and S (number of species) on the y axis.
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Figure 9.3 Rarefaction curves for the carabid beetle data in Table 9.2. The upper
curve is the rarefaction of the young-plantations data; the lower curve is the rarefac-
tion of the old-plantations data. For the young plantations data, the 95% confidence
interval is shown as a dashed line. (Adapted from Gotelli and Graves 1996.)
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Even without a computer simulation, we already know the location of two
points in this curve. The first point is the observed sample itself, which con-
tains S species and N individuals and is plotted somewhere in the upper right
hand corner of the graph. The second point is close to the axis. Regardless of
the biodiversity data or the classification scheme, if we draw only a single
individual, we will count only one species. Therefore, the rarefaction curve
must end at the point [1,1] (representing 1 individual on the x axis and 1
species on the y axis) in the lower left-hand corner of the graph. Between
these two extremes, the rarefaction curve is constructed by drawing subsam-
ples from the original sample and extending the curve from the right to the
left by interpolation.

Figure 9.3 shows the rarefaction curves for both the young and the old
plantations. This figure was constructed by computer simulation of random-
ly drawing a specified number of individuals from the two original samples
in Table 9.2. For the young-plantations data, the curve bracketing the 95%
confidence interval is also illustrated.

ASSUMPTIONS OF RAREFACTION

The rarefaction model entails a number of assumptions if it is going to be
used to compare samples from different communities.

v The underlymg commumty is constant, and its membershtp is closed. In
other words, we assume that “the candy jar is closed,” so that its con-
tents are not greatly influenced by individuals migrating in from other

_ habitats. As we will see, however, there are some assemblages where the
candy jar appears to “leak” and the total spec1es richness in the j )ar does
not stay fixed from one time period to the next. ‘

v Sampling has been sujfzczent to allow for a useful compamson of two or
more communities. Because all rarefaction curves converge at small sam-
_ ple sizes to the point [1,1], we may not be able to distinguish different .
curves easily unless we have sampled a sufficient number of individu-
als. In practice, it is difficult to determine whether sampling has been
sufficient because we do not know how close our ongmai sample is to.
the asymptote of the rarefaction curve. Asymptotic species richness esti-
_ mators (described later in this chapter) can be useful for this purpose.

v Individuals in dzjferent communities have been sampled with zdenttcalk
-methods. All sampling methods have their biases. Therefore we cannot,
for example, validly compare insect diversity samples from pitfall traps
and sticky traps. However, we could use rarefaction to compare the
ssampling efficiency of pitfall traps and sticky traps used at the same site
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(e.g., Ellison et al. 2007) We could also compare dlversu:y in two sites
by pooling data from pitfall traps and sticky traps, but only if both sam-
pling methods were used in the same standardized way in both s1tes

¢ The spatial dzstmbutwn of individuals is random. If the individuals of ‘
each species are clumped or aggregated in their occurrence, then indi-

- vidual-based rarefaction will overestimate the number of species that
would be found in a random sample taken from a small area.

v Individuals are sampled mdependently and at random, This assump— ‘
tion is probably the one that is violated most often in sampling studies.
The unit of sampling is rarely a single individual. Instead, we use pltfaﬂ

_ traps, plot surveys, fish seines, timed counts, soil cores, or other sam-
pling units that capture multiple individuals but are themselves inde-
pendent of one another. As we will see, the rarefaction model can be
extended to use with sample-based data, which can also help to over-
come the effects of clumping of mdzwdual species occurrences at smaH ‘
spat1a1 scales (assumption #4). , '

v The samples to be compared are taxonomzcally szmzlar i two sam-
ples have identical rarefaction curves but none of the speczes in thetwo
~samples are the same, we would not necessarily want to conclude that
‘they were drawn from the same assemblage. Rarefaction estimates
 species richness and takes into account the relative evenness of species,
but it does not directly quantify or compare the composition of two com-
~ munities. Similarity indices, which also have samplmg distributions, can
~ be used to directly assess the ‘composition of two communities via the
expected and observed number of shared spec1es (Chao o al 2005)

INDIVIDUAL- AND SAMPLE-BASED RAREFACTION

The examples in this chapter describe the biodiversity sampling as a random
selection of individual organisms, and the statistics described here are based
on this model of random sampling of individuals. In reality, biodiversity data
are rarely sampled this way. The unit of study is usually a pitfall trap,
quadrat, point count, trawl sample, food bait, or some other sampling unit
that attracts or captures multiple individuals.

The problem is that the sample represents the independent statistical unit
of replication, but it is the individuals within the sample that contain the
information on biodiversity (Gotelli and Colwell 2001). The examples in this
chapter describe individual-based rarefaction, in which individuals are ran-
domly chosen from a single large sample. However, data more typically con-
sist of a collection of many samples, each of which contains multiple indi-
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viduals and species. For such data, it is possible to conduct sample-based
rarefaction, in which a random subset of entire samples is drawn from the
data, and from these randomly selected samples we calculate the number of
species observed.

In sample-based rarefaction, we often do not count the individual organ-
isms in a sample, but simply record whether or not a given species is present
in that sample. Sample-base rarefaction also results in a rarefaction curve, but
the x axis of the curve is the number of samples, not the number of individu-
als. Also, the origin of the sample-based rarefaction curve may no longer
occur at the point [1,1] because a single sample will usually contain more
than a single species.

Sample-based rarefaction uses the sample as the proper unit of replication,
but there is still a potential problem of differences in underlying abundance.
Suppose we compare two habitats with sample-based rarefaction curves and
estimate the number of species expected for, say, 100 samples. If the number
of individuals per sample is much greater in one of the habitats than the
other, the sample-based rarefaction still does not allow for a proper compar-
ison of diversity in the two regions because they differ in their abundance
levels. The solution is to rescale the x axis of the sample-based rarefaction
curve from samples back to individual abundances (Gotelli and Colwell
2001). Thus, the rarefaction curves will potentially be shifted to the left or to
the right, depending on the average number of individuals that would be
expected for a given number of samples.

Incidentally, when using sample-based rarefaction, we can relax the
assumption that the spatial distribution of individuals is random (assump-
tion #4). The samples preserve any inherent heterogeneity in spatial distribu-
tions, so that diversity per sample is properly estimated. In the remainder of
this chapter, we will focus on individual-based rarefaction. See Colwell et al.
(2004) for more details on sample-based rarefaction.

CALCULATING THE RAREFACTION CURVE AND ITS VARIANCE

When we calculate a rarefaction curve, we want to know the average or
expected species richness for a given number of individuals. As we saw, we
expect some variation among the random samples, so there is also a variance
and a confidence interval that can be associated with the average.

The rarefaction curve and its variance can be calculated (or estimated) in
three different ways. First, we can use a computer to repeatedly simulate ran-
dom draws of individuals from the original collection, as we described earli-
er for the beetle data.

A second method for calculating the rarefaction curve is to use statistical
sampling theory, and directly calculate the expected number of species and
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its variance, without resorting to a simulation (Heck et al. 1975). This calcu-
lation is based on statistical equations that specify the number of permuta-
tions of the data that are possible with a sample of a given size.

Finally, a very good approximation to the rarefaction curve can be calcu-
lated from the following equation (Brewer and Williamson 1994):

E(Sm) o 2(1‘f pi)N - Equaﬁoﬁ9.3 ‘
- i=1 - ~
where § is the number of species, N is the total number of individuals, and pi
is the proportion of individuals of species i in the original sample. E(S,,) is
the expected number of species to be found in a subsample of m individuals
drawn randomly from the original collection of N individuals.

Carefully compare Equation 9.3 to Equation 7.6 in the Island Biogeography
chapter. In that chapter, we developed a passive sampling model (Coleman et
al. 1982) to predict the number of species on an island of a certain size. In the
passive sampling model (see p. 170), individuals were seen as analogous to
darts, species were analogous to the colors of the darts’ feathers, and islands
were analogous to targets that were randomly hit by the darts. Each island
randomly “sampled” a fraction of the total number of individuals in the arch-
ipelago. Equation 9.3 represents a parallel derivation based on the propor-
tion of the total number of individuals contained in the subsample. In fact,
we could say that the passive sampling model for islands is simply a rarefac-
tion curve constructed from a pooled list of all the individuals and species
that are present in the archipelago. The number of individuals “sampled” by
the island is proportional to the relative area of the island.

It is beyond the scope of this textbook to derive or present equations for
the variance of the rarefaction curve. However, we would note that in indi-
vidual-based rarefaction, the variance (and the confidence interval) converges
to 0.0 at the maximum and at the minimum abundance. At the minimum
abundance of 1 individual, we will always count exactly one species, so there
is no variance. At the maximum abundance of the original number of indi-
viduals S, we will always count exactly S species, so the variance will also be
zero at that point (see Figure 9.3).

However, the observed collection is itself a random sample from a much
larger community. If we were to take a second sample of N individuals from
the same community, we would not necessarily obtain S species again.
Therefore, the variance at the largest sample should not converge to zero.
Colwell et al. (2004) derived variance estimators for sample-based rarefaction
that take into account the estimated variability of sampling from a much larg-
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er statistical universe. Software packages available for free on the internet can
be used to calculate individual- and sample-based rarefaction curves and
their variances (Colwell 2004, Gotelli and Entsminger 2007).

Species Richness and Species Density

When ecologists discuss “species richness,” in fact they are usually referring to
species density—the number of species collected per a standardized sampling
effort (Simpson 1964). This standardized sampling effort might be defined by
time (hours spent searching), space (area of a quadrat censused), or some other
arbitrary but consistent sampling unit (e.g., number of species per trap/time).

We prefer to think of species richness as the expected number of species
for a given number of individuals. In other words, we are referring to species
richness as a standardization based on the number of individuals sampled.
The distinction is important because species density actually has two com-
ponents: species richness, and the total density or abundance of organisms in
the sampling area (James and Wamer 1982). The relationship can be seen by
noticing that the units of these terms cancel out as follows:

DIVERSITY Species _ Species Total
MEASURES  density ~  richness density Expression 9.2
Species Species Individuals
UNITS Area  Individuals Aren

Thus, species density is affected both by species richness (number of species
per standardized number of individuals) and by the total density of organ-
isms in the study area (individuals per unit area or other sampling unit).
Although most ecologists are interested in species density, the total density
of organisms determines the number of individuals sampled and potentially
can have a big effect on measured species density.

The challenge is that the total density of organisms is affected by the sam-
pling design the investigator uses. Great care must be taken when compar-
ing the diversity between areas that were not sampled with equal effort. Even
when sampling is directly comparable, total density can be affected by local
sampling conditions such as such as air temperature or cloud cover, which
influence the movement of animals and therefore the sampling efficiency of
traps. Finally, total density can also be affected by important biological fac-
tors. For example, habitats with high nutrient inputs may have greater bio-
mass and abundance than habitats with low nutrient inputs. Rarefaction is
an important analytical method for biodiversity studies because it separates
species density into the components of species richness and total density.



218 CHAPTER 9: MEASURING SPECIES DIVERSITY

Asymptotic Species Richness Estimators

Rarefaction is a method standardizing species richness data through inter-
polation: we rarefy the observed data to determine how many species would
have been found in a smaller sample. However, an equally important ques-
tion is, How many total species are present in the study area (Colwell and
Coddington 1994)? If we could sample enough individuals, we would even-
tually reach an asymptote in species richness, and further sampling would
find no more new species. To estimate this asymptote, we can use extrapola-
tion to make inferences beyond the limits of our sample.

Asymptotic estimators use information in a biodiversity sample to esti-
mate the number of undetected species that are present in the community but
missing from our sample. In other words, we use the information on the
numbers and colors of jelly beans in a small handful to estimate the number
of different colors in the entire jar.

The Chaol index (Chao 1984) is a particularly powerful and simple asymp-
totic estimator that uses information on the frequency of rare species in the sam-
ple to estimate the minimum number of missing species. Suppose we have a
collection of N individuals with an observed number of species Sqps. Let f; = the
number of singletons (species that are represented by exactly one individual in
the sample), and let f; = the number of doubletons (species represented by exact-
ly two individuals). Intuitively, it would seem that the more of these “rare”
species that are present in the sample, the more undiscovered species there are
in the community. The Chaol estimate of the total number of species is:

N2 .
Sest = Sobs T %ﬂlf—) ‘ Equation 9.4

where Seg; is the estimated number of species, Sy, is the observed number
of species, and the ratio ( f 1%/(2 fo) is the estimated number of undiscovered
species. For example, for the carabid beetle data in the old pine plantations
(Table 9.2, column 3), 9 species were observed, 4 of which were represented
by only 1 individual (f; = 4) and 1 of which was represented by 2 individuals
(f2 = 1). Thus, the estimated total species richness is 17, with 8 undiscovered
species. For a number of reasons, the Chaol index is a conservative estimate,
so it should be interpreted as estimating the minimum number of undetect-
ed species. A modified form of this index is available for sample-based data,
and variance and confidence intervals can also be calculated; see Colwell
(2004) for details.
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How much sampling effort is needed to reach Ses? Equations are now
available to answer this question (Gotelli et al., in press), but Equation 9.4
immediately yields a heuristic “stopping rule”: the asymptote will be reached
when all species are represented by at least 2 individuals in the sample. From
Equation 9.4, when the number of singletons (f1) equals 0, Sest = Sops and there
are no further undiscovered species. Unfortunately, to reach this goal may
require a lot of extra sampling. When enough individuals are accumulated
to eliminate the singletons in the initial sample, previously undetected
species will start appearing. These new species will initially be represented
by singletons, and it would take much additional sampling to capture more
individuals of these species so that they become doubletons.

Even for well-sampled faunas, a doubling or more of the initial sample
size may be necessary to capture all the rare species. And in some cases, an
asymptote may never be reached. In the tropical rain forests of La Selva,
Costa Rica, an intensive collecting program continues to yield new, unde-
scribed species of ants and other arthropods after 10 years of collecting
(Longino et al. 2002). The problem lies not with the particular diversity esti-
mator, but with the sampling framework. Many of the rare species collect-
ed at La Selva are probably migrants or strays that are not breeding locally.
In other words, the biodiversity candy jar is “leaky” or porous and the
assumption of a fixed sampling pool in a closed environment (assumption
#1) is not warranted. If the species pool is changing through time, the
asymptotic estimators may also be inaccurate because species represented
by singletons collected in early samples may never recur in later samples
(Magurran 2007).

Species Evenness

Now we will consider the problem of how to estimate species evenness.
Dozens of species diversity indices and graphical methods have been pro-
posed (Magurran 2004), most of which make use of the p; values from the
rank abundance curve. Perhaps the most famous is the Shannon-Wiener
index:

S

H'=-p; IH(PZ-) Expression 9.3
i=1

For a given number of species S and a given number of individuals N, the
higher the index, the more even the relative abundance.

However, there are some challenges with using metrics such as the
Shannon-Wiener index to quantify species evenness:
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1. Most diversity indices are calculated using the observed p; values.
However, these p; values are sensitive to the number of individuals cen-
sused. As an extreme example, regardless of the shape of the rank abun-
dance distribution, if only one individual is sampled, p; = 1.0 and p; = 0.0
for all other species. As more individuals are sampled, the estimated val-
ues for p; change, because rare species begin to appear in large samples.
Consequently, estimates for most diversity indices (including species rich-
ness) may be affected by the number of individuals sampled. Chao and
Shen (2003) provide a correction for the Shannon-Wiener index that
accounts for the undersampling of rare species.

2. Most of the indices do not have definable “units” of diversity that can be
easily understood. Jost (2007) provides simple formulae for converting
common diversity indices into units of “effective species.”

3. Most of the indices cannot be related to a statistical sampling model.

We will use a simple diversity index, Hurlbert’s (1971) probability of an
interspecific encounter (PIE) that largely overcomes these problems. As we
will see, this index also has an important theoretical relationship to the rar-
efaction curve.

The PIE index answers a simple question: what is the probability that two
individuals randomly drawn from a sample represent two different species?
At one extreme, if all the individuals in the sample are of the same species,
then the answer must be PIE = 0.0, because there is no chance that we will
ever draw an individual representing a second species. At the other extreme,
if the relative abundances of all the species are maximally even and there are
an infinitely large number of species, PIE = 1.0, because the next individual
drawn will always represent a new species. Although 1.0 is the theoretical
maximum value for PIE, real assemblages, having less than an infinite num-
ber of species, will always have a value of PIE that is less than 1.0.

We can use some simple laws of probability to derive a mathematical for-
mula to estimate PIE. First, recall that the p; values represent the fraction of
the total number of individuals that consists of species i. We can also inter-
pret p; as an estimator of the probability that a single individual drawn from
the sample represents species i. Therefore, the probability that two randomly
drawn individuals, sampled with replacement, both represent species i is:

P(two individuals are both species 1) = (p;)(p;) = (;zz,-)2 Expression 9.4

However, this equation gives an answer for just one of the species. To deter-
mine the probability that both individuals are the same for any species in the
assemblage, we must add these probabilities across all species:
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S
2
P(two individuals are the same species) = 2(}%) Expression 9.5
i=1
The probability that the two individuals represent two different species is:

S
2
P(two individuals are not the same species)=PIE=1.0- 2 (pi) Expression 9.6
i=1
Finally, we will multiply by a small bias-correction factor based on N, the
total number of individuals in the sample:

pie=(Lo)10-X(pf |  Bauaionos

Once the sample size is reasonably large (N > 20), the bias-correction factor
has almost no effect on the calculated value of PIE.

With Equation 9.5, the calculated value of PIE for the young-plantations
data in Table 9.2 is 0.92 versus 0.72 for the old plantations.

There are several reasons for preferring PIE to other diversity indices. First,
PIE is measured in units of probability, so that differences or changes in
diversity can be meaningfully interpreted. Second, PIE, unlike many other
diversity indices, is insensitive to sample size. Figure 9.4 illustrates a rarefac-
tion-style calculation, in which random subsamples of individuals were
repeatedly drawn from the old- and young-plantations data, and the average
PIE value calculated. You can see that the average does not change, although
the estimates become more variable at smaller sample sizes.

Finally, PIE has an important conceptual link to the rarefaction curve: PIE
measures the slope of the rarefaction curve at its origin (Olszewski 2004).
Remember that the origin of the rarefaction curve is the point [1,1] (one indi-
vidual and one species). The slope of this curve b is measured as:

_AY _ A Species number
T AX ~ ANumber of individuals

b Expression 9.7

At the base of the rarefaction curve, the slope would represent the expected
number of new species added as we add another individual. If the assem-
blage consisted of all individuals of one species, the rarefaction curve would
be flat, and its slope would equal 0.0. As we described earlier, PIE also equals
0.0 when all the individuals are the same species because there is no chance
that we will add a second species when we draw a second individual. At the
other extreme, the steepest slope theoretically possible for the rarefaction
curve is 1.0, which would happen if the second individual added always rep-
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Figure 9.4 Rarefaction of the diversity index PIE, the probability of an interspecific
encounter. This index (see Equation 9.5) measures the chances that two randomly
drawn individuals represent two different species. Each line is the average of 1000
simulations. Unlike species richness, this index is not sample-size dependent, and
the curves for the young- and old-plantations data do not change systematically as
the number of individuals sampled is reduced. The dashed line indicates the theo-
retical 95% confidence interval for the young-plantations data. Although this theo-
retical confidence interval is drawn as a symmetric distribution, calculated values of
PIE cannot exceed 1.0. (Adapted from Gotelli and Graves 1996.)

resented a new species. Similarly, for a maximally diverse community, PIE
equals 1.0 because the probability that the next individual added is a new
species is 1.0.

In the same way that the rarefaction curve and PIE are closely related,
there is a relationship between species richness and all measures of species
evenness. Species evenness influences the shape of the rarefaction curve, but
the number of individuals and species sampled influences the relative even-
ness of the distribution. Although species richness and species evenness rep-
resent different components of biodiversity, they are not completely inde-
pendent of one another.

There is a final bonus that comes from using PIE as an index of species
evenness: it can be calculated for data that are expressed in units of percent
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cover or biomass. Suppose that we survey the grasses in a 0.25 m? quadrat
of grassland. We cannot count individual grass plants, but we can set up a
grid of 100 points and record the species identity (or presence of bare soil)
beneath each point. From these data, we could calculate:

Number of points that touched species i
Pi="g Expression 9.8
ZNumber of points that touched species i
i=1

Notice that if none of the points touch bare soil (i.e., there is a species present
under every point), the denominator of Expression 9.8 equals 100. Using these
p; values, we can calculate the PIE index in the same way we did earlier.

Alternatively, suppose you have measured the biomass of each species
rather than the abundance or percent cover. In this case:

Biomass of species i
Pi =3
ZBiomass of species i

i=1
However, because we are no longer randomly sampling individuals, the
interpretations of PIE for percent cover or biomass data are subtly different:
PIE now represents the probability that two randomly chosen points in space
land on two different species. And PIE for the biomass example represents
the probability that two randomly chosen tiny samples of animal (or plant)

tissue represent two different species.

It is important to emphasize that the rarefaction model cannot be used
unless we have sampled discrete individuals. However, even though we can-
not calculate a rarefaction curve directly for percent cover and biomass data,
we can calculate PIE, which is a diversity index that measures the slope of
the rarefaction curve.

Expression 9.9

Summary

Quantifying and comparing patterns of species diversity is a basic activity of
community ecologists. However, estimating species richness is challenging
because many species have low abundances and are often undetected in bio-
diversity surveys. Moreover, the number and relative evenness of species is
very sensitive to the number of individuals and samples collected. This chap-
ter described three statistical tools that can help overcome these challenges.

1. Rarefaction, which standardizes comparisons of species richness to a com-
mon number of individuals.



224 CHAPTER 9: MEASURING SPECIES DIVERSITY

2. The asymptotic estimator Chaol, which provides a minimum estimate of
the number of species that were undetected in biological survey data.

3. PIE, the probability of an interspecific encounter, which measures the
chances that two randomly drawn individuals from an assemblage represent
two different species.

The statistical analysis of biodiversity data is a challenging and rapidly
evolving field (Mao and Colwell 2005). Current and recent topics include the
comparison of communities on the basis of similarity and species composi-
tion (Chao et al. 2005), estimation of sampling efforts needed to achieve
asymptotic species richness (Gotelli et al., in press), and the partitioning of
biodiversity into local and regional components (Jost 2007). Free software
applications for the analysis of biodiversity data include EstimateS (Colwell
2004), SPADE (Chao and Shen 2006), and EcoSim (Gotelli and Entsminger
2007).

Pkoblems

9.1 Using the ant data in Table 9.1, calculate Chaol, PIE, and the expected
number of species for a random sample of 50 individuals.



